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OF THE MOTION OF ROTATED AND UNROTATED ROCKETS 459

An account is given of the mathematical theory of the motion of a rocket in flight. The aerodynamic
forces and couples, and those due to the action of the burning gases, are investigated as fully as
possible, and the equations of motion are set up in their most general form. The effects of a variety of
disturbing factors, such as wind and asymmetries of design and functioning, are considered.
Solutions of the equations, most of which are suitable for numerical computation, are given under
various assumptions regarding the form of the axial spin, the aerodynamic lift moment, the accelera-
tion, etc. A thorough investigation of the conditions necessary for stable motion is carried out. The
paper concludes with a summary in which the main features of rocket motion, as revealed by the
theory, are discussed in general terms.

1. INTRODUCTION
1-1. GENERAL DESCRIPTION OF THE PROBLEM

The object of the present paper is to provide as comprehensive an account as possible of the
mathematical theory of the motion of a rocket in flight. Under the name rocket we under-
stand any projectile, rotated or unrotated, which contains a combustion chamber in which
some form of propellant is consumed and converted into gases which are rapidly ejected
through one or more orifices, and so, by virtue of the law of conservation of momentum,
cause the projectile to move. We assume that the propellant is solid in the cold state and that
it contains all the materials necessary for complete combustion. The theory developed can
be used to determine the motion of any such projectile provided that it does not possess too
great a degree of asymmetry. It is, however, most suited for the investigation of rockets of
the kind which have been developed in this country during the 1939-45 war, and the
majority of the simpler results obtained have been derived under assumptions which are
valid for rockets of this type.

We are chiefly interested in the motion during the period when the propellant is being
consumed, i.e. during burning. After all-burnt the motion does not differ from that of a shell
of the same shape, and the ordinary shell ballistic theory is therefore applicable.} Also, it
is during burning that disturbing factors other than gravity have their greatest effect. In
addition, we confine our attention to rockets whose burning time is not too long, i.e. we
assume that the angular departure from the initial direction of motion remains small while
the propellant is being consumed. This assumption holds for all rockets of the type men-
tioned above.

The motion of a rocket during its burning period is of quite a different character from that
of a shell. This is primarily due to the forward thrust which is exerted by the escaping gases
and which is by far the largest force acting on the projectile. Owing to the magnitude of the
thrust, it may not be necessary to know the magnitude of the aerodynamic forces and couples
(in particular, the drag) to the same degree of accuracy as for a shell, but this advantage is
offset in practice by the difficulty of accurately determining the thrust, and by the con-
siderable variation occurring between projectiles.§ In nearly all other respects, however, the
problem of predicting the path of a rocket is much more complicated than the similar pro-
blem for shell. One of the main reasons for this is the fact that the rocket’s motion is very

t Thus projectiles which derive their oxygen from the surrounding atmosphere are excluded.

I See, for example, Fowler, Gallup, Lock & Richmond (1920) or Nielsen & Synge (1946).

§ There are several other complications, such as the absence during the burning period of a ‘base drag’
contribution to the total air resistance.

56-2



460 R. A. RANKIN ON THE MATHEMATICAL THEORY

sensitive to asymmetries of design and functioning, such as are caused by inaccuracies in
manufacture, by uneven gas flow and by distortion of the metal components under the
severe stresses set up during burning. These asymmetries can produce considerable devia-
tions from the mean trajectory and are the primary cause of the characteristic high dispersion
of the rocket as compared with shell fired from guns. Accordingly, it is important to know
how the various asymmetries affect the motion, and which of them are of most importance,
so that care may be taken to ensure that the relevant manufacturing ‘tolerances’ may be
confined within as narrow limits as possible. A great deal of the complexity of the mathe-
matical theory is due to the fact that perfect axial symmetry is not a legitimate assumption.

The mathematical theory applies to both rotated and unrotated rockets. Unrotated
rockets are usually stabilized by fitting fins near the rear end in order to ensure that the lift
moment is stabilizing. If the projectile is rotated it may be possible, as for a shell, to stabilize
the motion without using fins. However, since the length-diameter ratio of a rocket is
usually higher than that of a shell, owing to the necessity of providing space for a combustion
chamber, it is not always possible in practice to impart enough spin to stabilize projectiles
without fins.

The assumptions made at each stage are clearly stated.

1:2. HISTORICAL BACKGROUND AND ACKNOWLEDGEMENTS

The first theoretical work on rockets done in this country was begun in 1936 when the
Rocket Section of the Ballistics Research Department was formed at Woolwich under the
direction of Dr A. D. Crow (now Sir Alwyn Crow). A considerable quantity of work on the
theory of motion of rockets and on methods of trajectory calculation was done there by
Mr W. R. Cook with the assistance of Mr A. T. Wadley and Dr F. E. Mercer. The two-
dimensional theory was developed by them and shaped into a form which proved of great
use in the study of the dispersion and deviation of unrotated rockets. The broad essentials
of the three-dimensional theory were also laid down on lines based upon the work of Fowler
et al. (1920). At the beginning of 1938 the further development of the three-dimensional
theory was entrusted to Mr C. L. Barham. By the systematic use of complex variables and
vector methods he extended the theory and derived solutions of the equations which could
be used in numerical computations. His work was embodied in an unpublished report
which has for long been known to rocket ballisticians under the affectionate title of “the
tome’. The theory of the deviation of an unrotated rocket due to wind was further extended
by him with the help of Messrs E. T. J. Davies and H. G. Haden, and the methods of cal-
culation of the main aerodynamic parameters were also improved by them. In 1942
Professor L. Rosenhead, who was then head of the ballistics section of the Projectile Develop-
ment Establishment at Aberporth, was anxious that the whole mathematical theory should
be reviewed and put upon the most general and satisfactory footing possible; it was at his
request and with his encouragement that the author began the systematic revision and
extension of the two- and three-dimensional theory giving special attention to the con-
sideration of the motion of rotated rockets, upon which work was then commencing in this
country. The results of these investigations were published in 1943 to 1945 in three depart-
mental reports by the author and were later, at the request of the Ministry of Supply,
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extended and amplified by him for the purpose of inclusion in a ‘monograph’ on the
exterior ballistics of rockets. This unpublished monograph, upon the mathematical part of
which the present paper is based, was written in conjunction with Mr A. T. Wadley and
contains, in addition to the mathematical theory, several chapters on its practical applica-
tions. ,

Such, in bare outline, is the history of rocket ballistic theory in Great Britain. The present
paper owes much to the labours of those mentioned above and to others; much of the work
of the early workers in the field was never written in official report form and has not, |
accordingly, always received its due recognition.

In the list of references a full list is given of all the published papers to which reference
has been made. In his development of the theory the author has made considerable use of
the work of Nielsen & Synge and of Kelley & McShane. This work is now openly published,
or in process of publication, but appeared originally in reports to the American Office of
Scientific Research and Development.

Since the above was written the author has received a copy of a book by J. Barkley
Rosser, Robert R. Newton and George L. Gross. entitled Mathematical Theory of Rocket
Flight (New York, 1947). This work contains an account of the theory of motion of a fin-
stabilized unrotated rocket;t the results obtained agree with those given in the present
paper for such rockets, although the functions rr(x) and rj(x) used in the solutions are of
a slightly different form from the functions 4(x) and B(x) used here.

1-3. NoTATIiON

A few preliminary words on the mathematical notation are perhaps required. On
glancing at appendices C and D the reader will notice not only that the number of symbols
used is very great, but that the notation differs in many respects from that which is customary
in shell ballistics. The extreme complication of the subject is sufficient excuse for the multi-
plicity of the symbols. The differences of usage between rocket and shell ballistics are, on
the other hand, attributable to British rocket tradition—which though young is firmly
established—and to the essential difference between the two types of projectile which is
reflected in the differing forms of the relevant mathematical parameters.

2. THE GENERAL EQUATIONS OF MOTION OF A BODY WHICH IS LOSING MASS
2:1. GENERAL

In this section the general equations of motion are derived for any body of variable
density which is losing mass from a certain plane portion of its surface.{ The analysis is
first applied to the rocket in § 2-5, where the expressions occurring in the general equations
are evaluated as far as possible by the introduction of certain simplifying assumptions.
The equations upon which all the later investigations are based are equations (2511, 12).
The reader may take these equations for granted if he wishes and proceed to § 3, since the
present section is, to a large extent, independent of the rest of the work. For this reason the
summary of the main notation is deferred to the beginning of § 3.

T The theory is modified to cover the case where there is a slow axial rotation and gyroscopic effects can
be neglected.
I Similar results by Gantmacher & Levin (1947) have just come to the author’s notice.
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2:2. DEFINITIONS AND NOTATION

Let B be a body which is bounded by a closed surface T of invariant shape. All points
interior to X are regarded as forming part of B. Thus a meaning can be assigned to velocities
or positions relative to B.

Let p be the mass density at any point P of the body, and let d7 denote a volume element
enclosing P. It is assumed that p is not discontinuous at any point, and that the derivative
of p with respect to the time exists at all points of the body. In the case of the rocket there
will be interior surfaces where these conditions are not satisfied, but these surfaces may be
regarded as being replaced by layers of arbitrarily small thickness throughout which the
conditions are satisfied. The final equations are independent of such discontinuities and
will continue to hold in the limiting case.

The body is assumed to be losing mass from a plane portion t S, of its surface called the
exit plane; particles of matter which have left this surface are no longer considered to form
part of the body.

The total area of the exit plane S, is denoted by . S, need not consist of a single simply
connected part of the surface, but may be composed of several unconnected areas.

The following notation for vectors is adopted. All vectors are printed in clarendon type.
Thus V, OX are vectors of absolute magnitudes V, OX respectively. Here OX is the line
vector from the point O to the point X. A cross denotes a vector product, and a dot a scalar

product, e.g. UxV. U.V

Let O be a point fixed in space from which the vector r = OP is measured. Let G be the
centre of gravity of the body at any time ¢, and let H be any point of B which is fixed relative
to B (see figure 1). Write

R=HP, R;=HG, r,=O0H, r;=0G.

r P

Ficure 1
Suppose that V, is the velocity of the point H in space. Then if € is the angular velocity
of the body, the velocity U of any point P fixed in B is
U=V,+2xR. (2-2-1)
The velocity of any particle of mass at P relative to B is denoted by v.

+ The condition that S, be plane is not essential but makes for simplicity. In certain cases §, may consist
of a number of plane but not coplanar areas. The appropriate modifications to the theory are easily made.



OF THE MOTION OF ROTATED AND UNROTATED ROCKETS 463

The operator d/dt denotes total differentiation with respect to the time £, the motion of
the body in space being taken into consideration. The operator d/d¢ denotes differentiation
with respect to ¢ relative to the body. Thus, if E is any variable vector,

d d

d—tE—atE—{-.QxE (2-2-2)
Let V be the velocity of G in space. Then
d IR,
V=—d—trG~VH—|—9 XRe+—=2 5 (2-2-3)

Here dR;/dt denotes the velocity of G in the body relative to the body.

2:3. THE EFFECT OF VARJIABLE DENSITY

If m is the total mass, and @ the rate of emission of mass from the exit plane, then

m =J pdr ‘ (2-3-1)
dp
and Q= ——f dr —-J pUyas, (2-8-2)
where vy is the component of v perpendicular to the element dS of the exit plane. Also
mR; = f Rpdr,
d iR, 4 dp
and therefore % (mR) = — QR +m 732 = & Rodr — f R ar, (2:3-3)
. 6R dp
ie. == f (R—Ry) 3 dr. (2-3-4)

Now, by considering the motion of the element of mass pdr relative to B i in the interval
of time (£, ¢4 0t), it is seen that

fBR( Zfé‘t)a’T—— f (R+va) pdr f Rpv,,dS.

0

Hence fBVpdT —-f Raf dr+ sovaNdS (2:3-5)
2

~ fB (R—Rg) P ar+ L (R—Ry) puydS (2:3-6)

by (2-3-2). This is the ‘continuity equation’.
Define the point N in the exit plane so that

QR, = [ Ronyds, | (2:3-7)
So

and write QW = f Vv, dS. - (2-3-8)
So

Then N is the ¢ffective centre of the exit plane, and W is the effective relative resultant gas
velocity at this plane.
By equations (2-3-4, 6, 7) IR,

fBVpdT — Q(Ry—Ry)+m 50 (2:3-9)
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2-4. THE EQUATIONS OF MOTION

These are derived from first principles by finding expressions for the linear and angular
momentum (about a fixed point) of the whole body, and equating their rates of change to
the external forces and couples acting on the system. This method has been chosen in pre-
ference to others involving energy considerations in the hope of avoiding the many pitfalls
which abound in this subject.

The linear momentum is, by (2:2-1, 3) and (2-3-9),

P:f (U-v) pdr = mVyy + & xf der+f vpdr
B . B B

= mVyy -+ m& RG+f vpdr = mV+QRy—Ry).  (241)
B
The angular momentum about O is
h:f r % (U+v) pdr = hg+ rG><P+f (R—Ry) x vpdr, (2:4-2)
B B
where h, :f (R—Ry) x Updr :J (R—Ry) x (@ xR) pdr (2:4-3)
B B

by (2-2-1) and the definition of R.

Let a, b and ¢ be unit vectors in the directions of the principal axes of inertia through G,
and let 4, B and C be the corresponding moments. a,b and ¢ are taken to be a right-handed
set. Let w, be their angular velocity relative to the body. Expressions for w, are given
in § 2-6. '

Write Q,=a.2, Q =02, Q =c.Q. (2-4-4)
Then h, = f (R—Ry) % (@ xR) pdr = adQ, +bBQ,+cCQ,, (24-5)
‘B
d o —al40)+b2% (BO) +¢ 2 (CQ) +(@+w,) xh (2-4-6)
an e aTt( 2) dt( ) i ¢ We G

Let L denote the sum of all the external forces acting on the body, and let M denote the
total couple about the centre of gravity. In the case of the rocket, L and M include all aero-
dynamic forces and couples, gravity, and differences in gas and air pressure at the exit
plane; also any reactional forces acting on the projectile while on the projector. The total
couple about the fixed point O is M1, xL.

Consider now the linear and angular momentum lost in the interval of time (¢, £+ 0¢).
The momentum at the time ¢-0¢ of B and of the mass emitted during the interval is

P 1OPL0t| puy(v+Vy+8 xR)dS.
So

Hence P f p0y(V+ V9 x R) dS = Lt;
So
i.e. by (2-3-7,8) and (2-4-1),
9P LV QRy R} = L—QW+V,+2xR,).  (247)
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This may be written in the form

d
™

Now consider the angular momentum after the interval dz. It is, by (2:4-2),

IRy (?R }

V=L—%—?—(RN—RG)—Q{W+2SZ><(R ~Rg)+ 2093 (2:4-8)

hg+8hg+ (rg+0rg) x (P-+0P) +fB(R-—RG-3RG) X (V+8v) (p+3p) dr

+atf puyT X (V- V- x R) dS.
So

Hence

1h0+£{erP+f (R—=Rg) XVpd’r}—I—f pAr X (V4+V,+Q xR)dS =M+rzx L.

dt dt B ) So
Therefore, by (2-3-2,7,8), (2:4:1,7) and (2-2-3),

Ay M+P><er—i{f (R—Rg) xvpdr] [ py(R—Rg) x (v-+ Vy+@ xR) S

di ¢ di ¢ di\), s

- M—f poy(R—Ry) X {v+8 x (R—Ry)} dS
S
---i{f (R—Rg) x vpdr| + Q(Ry—R;) x R, (2-4-9)
@i\l , It

Now define the point M on the exit plane, and the distance ¢,, by
f RXVpdT:RMXf v,od-r+q2f vpdr. (2-4-10)
B B B

In the application to the rocket, M may be regarded as the point in the exit plane where the
‘thrust’ acts. M need not coincide with N. With this notation, and by (2-3-9), (2:4-9)
becomes
d : d
o =M~ o0y(R—Rg)x (v x (R—Rg)}dS— (R, —Rq) x 3, [ vpdr
IR, d
—E xf Vpdr—Q % {(RM—RG) xf v,;df}—a—t{qu Vpdr;. (2-4-11)
Equations (2-48, 11) are the general equations of motion. The left-hand side of (2:4-11) is
defined by (2-4-5, 6).

2:5. SIMPLIFICATION OF THE EQUATIONS

The equations which have been obtained are now applied specifically to the rocket, and
several reasonable simplifying assumptions are made. It is assumed that the positions of
the points M and N are fixed in B. Then

IR, _ IR,

—l==A=0. | , (2:5:1)

The body consists of two parts, B; which remains of constant density throughout, and
B, which consists of those parts which change density at some stage during the motion,

Vor. 241. A. 57
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i.e. B, consists of the charge and interior gases. Let G, be the centre of gravity of B;. It is
assumed that G, remains fixed in the body. Then the velocity of the centre of gravity inside
the body is given by IR

c_ @ Q 5
5= L(Re—Rg,) = £G,G. (2-5-2)

For it follows from (2-3-4), on taking H = G|, that
(?R —QR; = U Rpdr+ de’l'} = O+—6—{RGJ pd’r}
(?t B, ot ! B,
d

T o

It is clear that (2:5-2) does not depend upon the particular choice of the fixed point H
made in the above proof. It is convenient from now on to take H at the instantaneous
position of G at the time ¢ (see figure 2). Let ¢, be the distance of G, from N, and write

NG, = ¢n, (2:53)

where nis of unit magnitude and is fixed relative to the body. Then, by (2-3-9) and (2-5-2, 3),
since R; =0,

R, R, pd’r} — QR

R N
va,odr R, +m’E = —Qqn, (2:54)

0 dQ a d oK.
and atj Vﬂd’l’ —dt_qln’ Ft{quBVpdT} = —HQIZi—t(QqZ)' (2 5 5)

Little is known of the magnitude of g,, but it is probable that it is small and that it remains
approximately constant (see § 3-61).

Now consider the integral

puyR x (2 xR) dS.
So

Let u be a vector from N to any point of the exit plane, so that, by the definition of N,
pv,udS = 0.
So

Since Rx(2xR)=Ryx (R xRy)+ux (@xRy)+Ryx (& xu)+ux(Qxu),

it follows that

ooy R % (2 xR dS = QRyyx (& x Ry) + f puyux (R xu) dS.
So ) So
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In order to evaluate the integral on the right-hand side it is necessary to know in what
manner the gas velocity and density vary across the exit plane S,. It is believed that in
practice the variations of pvy across S, can be neglected, and accordingly it is assumed that
puy takes the same value at all points of S,. Then N is the geometrical centre of S;, and it is

assumed that S, is such that
So

where u,, u, are the components of u along any two perpendicular directions in ;. This is
the case if, for example, S, has symmetry of order greater than 1 about N (see § 3-4).
Let k be a unit vector through N normal to S, towards the interior of B, and let £, be the

radius of gyrationt of S, about k. Write

NG = 1. ~ (2-5-6)
Then f oy X (R X 1) dS = 1Ok +KQ,). (2:5:7)
‘ : D
Hence pryR X (& xR) dS = QR x (2 xRy) +1QF2(2 +kQ,). (2-5°8)
So
Consider now the integral pvyR x vdS.
On the exit plane, let v=W+v, v
so that pryR % vdS = QRyx W—Gyng, % (Q0), (2:59)
So
where G, = ——f poyR x v, dS+ngq, ‘% (Qg,)- (2-5-10)
So

G may be regarded as the rotational couple due to the jet, since it is only appreciable when
S, is the exit plane of a multiple offset nozzle system. The second term on the right-hand
side of (2-5-10) is small in comparison with the first term which provides the main couple.

We can now state the equations of motion in a simplified form. They are, by (2-4:8,11)
and (254,35, 8,9),

jtV L— Q’{W+2SZ><RN—I— Q(RN—[—qln)} d?R (2-5-11)
and  Tho—al(40,)1b % (BO,)+c % (00)+ (@ +wy) x (a4Q, bBO, T ¢CQ,)

— M+Gy— QRyx (W8 XR,) —$QRA(R +kQ,)

+%?91RM><n+quﬂ><(RM><n)-[—quq29. X 1. (2:5-12)

2:6. THE MOTION OF THE PRINCIPAL AXES OF INERTIA INSIDE THE BODY

It can be shown that, for a general body,

B YZa ZXb XYc\dp
We = HB cTC—AT4=- B}atd

1 If the rocket has a single nozzle, S, will usually be a circle of radius b, and #? = 1b}; an expression for
k% when a multiple nozzle is used is given in §9. Formula (2-5-7) continues to hold without the assumption
of constant pv, if k, and k are defined suitably.

(261)
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where X=R.a, Y=R.b, Z=R.c, (2-6+2)

and R is measured from G. Under certain assumptions regarding the symmetry and dis-
position of the charge (2:6:1) may be evaluated approximately giving

Y,Z,a Z,X,b

X. Y, c
we = Q{B~C+ c—4 +AI—IB}’ (2:6-3)
where GG, =Ry+¢gn=X,a+Y b+Zc.

So far nothing has been assumed about the relative magnitudes of the moments of inertia
A, B and C. In all cases of practical application, however, the rocket’s shape and mass
distribution is such that the transverse moments 4 and B are approximately equal, and are
both considerably greater than the longitudinal moment C. When 4 = B, the precise
directions of the vectors a and b are not uniquely determined, and any perpendicular
directions in the plane normal to ¢ may be chosen. In this case it is dc/dt and not w; which
is of interest, and it can be shown, from (2-6-1), that

ac 1 i)
5{=wc><c=me{R—(R.c)c}(R.c)g‘gdr. (2-6+4)

3. DESCRIPTION OF NOTATION AND EXTERNAL FORCE SYSTEM

3:1. GENERAL

In this section a general description is given of the main notation, assumptions, and
definitions employed. The external forces acting on the rocket are derived and expressed
in forms which display their dependence upon the various parameters, such as velocity
and axial spin. '

3:2. DESCRIPTION OF THE MAIN NOTATION

The main notation used in the succeeding sections is defined here. It differs slightly
from that employed in §2. All other symbols are defined as they arise. A full index of the
symbols employed in the work is to be found in appendix D.

3:21. Co-ordinate system

The various systems of co-ordinate axes used, together with other vectors descriptive of
the rocket and its motion, are shown in figure 3. In this figure all lettered points, except O,
lie on a sphere of unit radius whose centre O lies at the centre of gravity of the rocket. All
lines in the figure are arcs of great circles. Thus if P and @ are points on the sphere, OP and
0Q are unit vectors, and P@Q is an arc of magnitude equal to the angle POQ.

3-211. Vectors whose directions are fixed in space

OV is the upward vertical.

0OX, OY, OZ are a right-handed set of mutually perpendicular axes whose directions
are fixed in space, and from which the Eulerian angles 6, ¢ and ¥ are measured.

OZ is the direction of projection (see § 3:7).

OX lies in the vertical plane VOZ through OZ and in the downward direction so that
the angle VOX is obtuse.

VZ = im—a, where a is the quadrant elevation (Q.E.).
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3-212. The motion of the centre of gravity

OT is the direction of motion of O in space at any instant. This includes the motion of O
inside the rocket. Thus OT is the tangent to the trajectory.

ZT = O (the angular deviation of the trajectory).

LtXZT =Y.

Ficure 3

3:213. The motion of the rocket’s axis

OC, is the direction of the rocket’s axis. This direction is assumed to be fixed in relation
to the body of the rocket. The point O will, of course, move relative to the rocket as the
propellant is consumed. It is convenient to define OC, with regard to the aerodynamic
forces (see definition 2, § 3-5).

OA,, OBy, OC are a right-handed set of mutually perpendicular axes, not fixed in the
body, with Eulerian angles 6, 0, ¥ measured from OX, OY, OZ.

OA, lies in the plane ZOC| so that the angle ZOA, is obtuse.

ZCy =0, LXZC,=1.

TCy = ¢ (the yaw).

The angle between the planes TOC, and XOZ is denoted by .

OS is the normal to the plane of yaw C,OT. § lies on the arc AyB,. OT, OS, OS’ are
a right-handed set of mutually perpendicular axes.

3:214. Vectors descriptive of certain asymmetries of design and functioning

In order to take into consideration the effect of the rotation of the rocket it is necessary
to choose a reference plane CyOA’ in the rocket which passes through OC, and whose normal
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OB’ is fixed in direction relative to the rocket’s body. The particular plane selected is
immaterial, and will be chosen in a convenient manner in § 3-3.

OA’, OB’, OC; are a right-handed mutually perpendicular set of axes with Eulerian
angles 0, ¢, ¢ relative to OX, OY, OZ. The point 4’ lies on 4B, and £4'Cy4, = ¢.

Axes of inertia. Let OA, OB, OC be the principal axes of inertia, chosen so that OG lies
close to OG,,. Let the arc C,C produced cut 4,8, in Cj.

If the moments about OA and OB remain exactly equal throughout the motion, the
precise directions of OA and OB are indeterminate and may be chosen in any definite
manner, e.g. to make ¢, = 0.

Asymmetric gas flow. The directions of the vectors OR, ON’, OM’, OK, OG’ and OL
are now described. These vectors all lie along OCj, for a rocket which is perfectly symmetrical
about OC, both as regards form and the combustion of the propellant (see note on sym-
metry in § 3-4). For a normal slightly asymmetrical projectile they are inclined at small
angles to OG,,.

OR is the direction of the #hrust, i.e. it is in the opposite direction to the resultant gas
velocity W at the exit plane. This direction is defined by (2-3-8). The angle a = £ROC, is
usually referred to as the jet malalinement.

N’O defines the direction of the centre of the exit plane, i.e. the line joining the centre N
(defined by (2:3:7)) to the centre of gravity O cuts the unit sphere in N’, when produced.

In the same way M’O defines the position of M, the point of action of the thrust, i.e. the line
joining the point M on the exit plane (defined by (2:4-10)) to the centre of gravity O cuts
the unit sphere in M, when produced.

OK is the direction of the normal to the exit plane towards the interior. It is the direction
of the unit vector k defined in § 2-5.

OG'’ is the direction of the line NG, joining N, the centre of the exit plane, to G,, the
centre of gravity of the charge and burning gases in the rocket, i.e. of the vector n of § 2-5.

OL is the axis about which the rotational couple G, (defined in (2:5-10)) acts.

The angles determining the positions of the seven points C, R, N', M’, K, G' and L are
defined in the following table. The letter P denotes any one of these seven points. The angles
associated with such a point P are shown in figure 3.

point P C, P LPCyA, reference
C e o +dc axis of inertia
R a, o+ thrust
N’ ocf, d+dy exit-plane centre
M’ Ops D+dy thrust-application point
K oy d+dx exit-plane normal
G o d+de charge centre of gravity
L oy o+, rotational torque axis

In general, all the angles mentioned in the table will vary during burning.

In the case of a perfectly symmetric projectile all seven angles &, vanish. Itis not, of course,
possible in practice to achieve perfect symmetry, but, by working to certain specified
“tolerances’, the manufacturers can keep the various malalinements and asymmetries
within fairly small margins. These tolerances are applied to the alinement, concentricity,
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etc., of the charge and the metal components, so that their connexion with the asymmetries
described above is only indirect. Nevertheless it is convenient and customary to refer to the
fourteen angles «, and ¢, as tolerances, or tolerance angles, since it is believed that they
arise mainly from faults in manufacture and assembly.

3:215. Wind
OW is the direction in which the wind is blowing in the neighbourhood of the rocket.

WZ=E oWZX=§E, WCy=E,

If the wind speed is w, its velocity, in vector form, is w = wOW.

3-22. Inertial and other characteristics of the rocket

The masses, moments of inertia, and other relevant dimensions and parameters are
defined here.

3-221. Complete weapon

This consists of all particles of mass interior to the external surface and the exit plane:
m is the total mass of the rocket at any instant.

[ is the distance of the centre of gravity from N the centre of the exit plane.

2a is the maximum calibre of the projectile excluding fins.

2a,, is the maximum overall diameter of the projectile including fins, if any.

A, B and C are the principal moments of inertia about OA, OB and OC, respectively.

3-222. The propellant

This is assumed to consist of a number of sticks of solid charge. The moments of inertia
of the charge, at any instant, depend upon the shape, number and disposition of the in-
dividual sticks, as well as upon the rate of burning on the charge surfaces. Formulae for
some simple designs of charge are given in §9-2.

q is the distance of the centre of gravity of the complete weapon from the centre of gravity
G, of the charge, before burning commences.

3-223. The exit plane of the nozzle system

There may be one or more nozzles. Only the main features of the nozzle system are
mentioned here. Some special designs are discussed in § 9.

The exit plane consists of all the cross-sections of the nozzles at their rear ends. These
cross-sections are assumed to be coplanar; the modifications necessary when this is not the
case can be made without difficulty.

q; = l—q is the distance between G, and the centre N of the exit plane.

g, is defined by (2-4-10). See §3-61.

2, is the area of the exit plane.

k, is the radius of gyration of the exit plane about the normal to it through N.

W is the resultant efflux velocity of the gases relative to the rocket on passing the exit
plane; it is defined by (2-3-8).

Q is the rate of emission of gas from the exit plane.
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3-23. The motion of and about the centre of gravity

¢ is the time in seconds measured from the instant of ignition, i.e. the instant when the
rocket first begins to move on the projector.

V is the velocity of the centre of gravity of the rocket in space; it includes the motion in
the projectile due to the alteration in mass distribution caused by the consumption of the
propellant; V = VO'T.

f = dV]dt is the acceleration of the centre of gravity along the trajectory.

s is the arc length of the trajectory, i.e. the distance traversed by the centre of gravity
since the instant £ = 0.

h, is defined by (2-4-3) and is the angular momentum of the rocket about O. In forming
this angular momentum, the velocity of the interior gases relative to the rocket is ignored.
Thus, to a high degree of accuracy, h, is the angular momentum of the solid components
alone.

w, is the angular velocity of the principal axes of inertia of the rocket relative to the
rocket. A general expression for w is given in (2:6-1).

Q is the angular velocity of the rocket about its centre of gravity.

r is the spin of the rocket about its axis, i.e. 7 = . OG,.

w is the angular velocity of the axis about O, i.e. w = Q —7rO0G,.

o is the total angle turned through by the projectile about its axis OG,,.

3-24. Suffixes
For the symbols .
A” ‘B’ Cﬁ\f; l’ m’ r’ s) t} V’ 3’ Z’ g’ H) 77) ®’ 03 A" E) o
a double zero suffix (e.g. m,,) refers to the instant of ignition when the motion first com-

mences. ;

A single zero suffix (e.g. m,) refers to the instant of launch when the projectile ceases all
contact with the projector.

A unit suffix (e.g. m,) refers to the instant ¢ = #;, when the propellant has been completely
consumed.

Owing to the multitude of symbols required and the limited number of roman and greek

letters available, it has been found necessary to apply numerical suffixes to symbols to denote

quantities which are not specifically associated with these three instants. No confusion
should arise, however, since all such symbols are defined clearly as they arise, and no
symbol possesses more than one meaning in the same section. Literal suffixes are also em-
ployed. For further information see the index of symbols (appendix D).

3:25. Differentiation ,
Differentiation with respect to the time #is denoted by a dot, e.g. ¢; differentiation with
respect to the distance travelled s by a dash, e.g. P'(s).

3-3. COMPLEX NOTATION

The main object of the theory is to solve the equations of motion and obtain mathe-
matical expressions for the angular deviation of the trajectory, the yaw and the rate of turn
of the axis, together with their orientations about the direction of projection OZ and the
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tangent of the trajectory O'T. When these quantities, together with the spin and velocity,
are known throughout burning, the motions of and about the centre of gravity are com-
pletely determined. In addition, their values at burnt provide the ‘initial conditions’
from which the subsequent motion of the projectile may be calculated as for a shell.

The quantities which arise most naturally in the mathematics are the complex quantities:

Complex angular deviation: Z = @e¥, (3-3-1)
Complex inclination of axis: { = fe¥, (3:3-2)
Complex yaw: 2={—7Z=7J¢X, (3-3-3)

The absolute values @, f and ¢ are the magnitude of the angular deviation, inclination of
the axis, and yaw. The angles ¥, ¢ and y define the orientations relative to the direction of
projection (¥, ¢) or to the direction of motion () (see figure 3).

The total angular velocity £ of the rocket is, from § 3-213 and figure 3,

2 =y 0Z+40C,+00B,, (3-3-4)
so that r=9.0C, = ¢+ cosd, (3-3:5)
and o =R —r0C, = —¢sind OA,+0 OB,. (3:3-6)

We now introduce the following important assumption:

A1. During the burning period of the rocket, the following quantities are small:

(d) ®: 0: 3: %y gy Uy Aps Uags Xys AR tU/V, aMr/V; kg/P)

(8) 0, w; dOJdt; dugfdt.

The quantities listed are called first order quantities. Those in group (@) are pure numbers,
while those in group (4) are angular velocities.

When we say an angular velocity such as 6, o or day/dt is small, we mean that the
ratio of the linear velocity of any point of the body due to the angular velocity about the
centre of gravity is small in comparison with the total velocity V of the centre of gravity;
i.e. if b is the distance of the furthest point of the rocket from the centre of gravity, then
20V, dw/V and d(dey/dt) V are small. For the angular velocity d@/ds, which is not
associated with the motion of the projectile about its centre of gravity, a different definition or
smallness is required. It is convenient in this case to suppose that d®/dt is of the order of g/V.

It follows from the assumption that the cosines of the angles listed may be replaced by
unity, and the sines by the angles themselves. Accordingly we have

r =g+, (3:3-7)

and 0= J(02+262). (3-3-8)

It is convenient to choose the reference plane in the body at this juncture (see § 3-214).
It is chosen so as to make b+ =0

at the instant = 0 when the motion first commences. If at this instant OC, is identical with
OZ, as will usually be the case, then the reference plane will be the downward vertical plane
through OC,, since then ¢ = ¥ == 0. With this choice we have

o= f :rdt — g4y (3-3-9)

Vor.241. A. 58
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Put 0= P+ Ve (3-3-10)

Then do/dt represents the angular velocity of the axes of inertia OA, OB about OC. The
total angular velocity of the axes of inertia is

1 dog dg¢ dfg .3
w, = dt OC, x OC+-2¢ 7 O0G,+ o OC. (3-3-11)
The complex rate of turn of the axis is obtained by differentiating (3-3-2), namely
(0 a2
§- (o o0

say. We also call d{/d: the (complex) cross-spin.

When the equations of motion are solved, expressions are given for Z, E and d{/d¢. From
these { may be obtained from (3-3-3), and the complex linear deviation of the trajectory from
the formula

Dér =fSst. (3-3-13)

Here Dcos Y is the drop of the centre of gravity below and perpendicular to the line of
projection (at launch), and Dsin Y is the lateral deviation to the left as viewed from the
rear. '

Other quantities used are the complex cross-wind

w, = webtsing, (3-3-14)
and 7= VE+uw,. (3-3-15)

In referring to the quantities defined by (3-3-1, 2, 3,12, 13, 14) the word ‘complex’ will
usually be omitted.

3:31. Mapping on the Argand diagram

If any of the complex quantities defined in § 3-3 above are plotted at a number of instants
during burning, on the Argand diagram, a curve can be drawn which is useful in illustrating
the variation of the quantity concerned. Since OY is to the left when viewed by an observer
looking along the direction of projection OZ, and OX is downwards, it is usually convenient
to reflect the Argand diagram of the complex plane in the y-axis, and then rotate in a posi-
tive (anticlockwise) direction through one right angle, in order to obtain a suitable picture.

Thus the curve C; whose cartesian co-ordinates are given by

x=—0sin¥, y=—0cos¥

shows the angular deviation ® and the orientation ¥ of the tangent to the trajectory about
the line of projection as viewed from behind. The x- and y-axes of the graph correspond to
the directions opposite to OY and OX respectively.

Similarly, the curve C, whose cartesian co-ordinates are given by

¥ =—0siny, y=—dcosy

shows the yaw & and the orientation of the rocket’s axis OG, about the instantaneous
direction of the tangent to the trajectory OT as viewed from behind.
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Curves of the forms C, and C, are shown in figures 6 to 15. Similar graphs may be drawn
to illustrate the motion of the axis ({) and its rate of turn (d{/dt), or the linear deviation
D™,

3:32. Complex vectors

When the equations of motion have been set up in general vector form it is necessary to
resolve them along certain suitable directions in order to reduce them to forms convenient
for solution. The motion in the forward direction, and about the rocket’s axis, can be
separated out by resolving along OZ or OC,. The motion at right angles to OZ or OGC, is
found most conveniently by combining one perpendicular component with 7 times the other
perpendicular component, i.e. by forming the scalar product with OX+:0Y or OA,+:0B,,.

Thus, for example,

(0X+i0Y).V = V(0X+i0Y).OT = V(®cos ¥+iOsin V)
- VZ.

The following relations are of help in forming these scalar products. E denotes any vector.

(OX+i0Y).E = e (OA,+iOB,).E+(E.OZ, (3-32:1)
(OX+i0Y).(OZ x E) = i(OX-+iOY).E, (3-32-2)
(OA,+iOB,).(OC, x E) = i(0A,+iOB,).E. (3-32-3)

A list of components of various vectors is now given. In it P denotes any one of the six
letters G, K, L, M, N, R. In setting up the equations only the components along the fixed
directions OZ and OX +:0Y are required.

components along
-

vector (0).€ (004 0oz 00X +:0Y
OA, cos i sin ¢ -0 eV
OB, —sin cos Y 0 iet
oG, 0 cos ¢ O sinyr 1 ; ¢
orT ®cos ¥ Osin ¥ 1 Z
oV —cos a 0 sin a —cos
ow sin £ cos §, sin § sin §, cos § sin £ ei

components along
A ,

r

vector OA, OB, oG, OX +i0Y, 0z
0).4 cos yr —sin i 0 cos yr 1 0
oYy sinyr cos 0 sin ¢ i 0
oz -0 0 1 0 1
0X+i0Y eiv iel ¢ 0 0
Q —40 0 r i(dgjdt) +1¢ r
© —46 6 0 i(dg/dt) 0
oP apcos (P+¢p)  apsin (P+¢p) 1 ap efotép +§ 1
OB —sin (¢ +0yg) cos (p+0g)  wgsiny, i eilotog agsin Yo+ 0 sin (¢ +07)
ocC agcos (+¢c)  acsin (¢+dc) 1 agefotéd +¢ 1
ocC 0 [(dotgfdt) + it (dpolde)] eitr+do 0
wg dogldt  [op(difofdt) +i(docgldt)] € +60 + (docldr) ¢ dog)dt
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The components of the following vectors occurring in equations (2-5-11,12) are also
required :
components along

A

~

vector OX+:0Y OZ
OR x ON’ ity €i0+dn) —jor, eilrtén) 0
O0Gx OM’ iy, €406 — o, eilo+d) 0
Qx ON’ dL[di -+ iray eio+é) 0
2 x 0G’ ddt +irog elo o 0
ON’x (2 x ON") i(dg/dt) —roy eloéx 0
Qx (OM'x 0OG’) r{a,, efotdy) — o, eilotdg} 0
These are used in conjunction with
W =—-WOR, (3-32-4)
Ry, =—ION’, R, =—-I0OM’, (3-32+5)
n=0G’, k=O0K. (3-32-6)

3:4. SYMMETRY OF ORDER 7

It is convenient to introduce this concept here. A surface is said to possess symmetry of
the nth order about an axis, which is called the axis of symmetry, when the following three
conditions are satisfied:

(1) m1is a positive integer. .

(ii) Ifr, 6 and z are the cylindrical co-ordinates of any point of the surface with respect
to the axis of symmetry, i.e. 7 denotes distance from, ¢ orientation with respect to, and z
distance along the axis, then the point whose co-ordinates are 7, §-2m/n, z also belongs to
the surface.

(iii) = is the greatest integer satisfying (ii).

In general terms this means that the surface can be divided into 7, but not more than »,
identical sectors about the axis of symmetry. Clearly every surface possesses symmetry of
at least the first order about any axis, so that the concept has no value unless 7 is greater
than unity.

It is clear that the concept may be extended to volumes and to any two- or three-dimen-
sional bodies. When applied to a body it is assumed that the corresponding parts of the
different sections are identical in density as well as in position. It is easy to establish the
following result:

If a body or surface possesses symmetry of order greater than 2 about an axis, then this
axis is a principal axis of inertia, and the moments of inertia of the body or surface about
any two axes perpendicular to this axis and passing through it are equal.

3-5. THE FORCE SYSTEM

The forces and couples which act on the rocket after launch fall into three groups,
(i) forces and couples due to the combustion of the propellant, (ii) the force of gravity, and
(iii) aerodynamict forces and couples due to the action of the air on the surface of the
projectile.

t There is also an aerostatic force which is quite trivial for the rocket and which we neglect altogether.
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The first group has already been considered in § 2. Its most important members are the
thrust @W, and the torque G, when the projectile is spun by the gases.

The force of gravity requires little comment. Ithas the form mg, where g is the acceleration
due to gravity, and g = —gOV.
~ The remainder of the present section (§ 35) is devoted to the discussion of the third group
of forces. In the notation of § 2-4, L and M denote respectively the force and couple (about O)
due to the forces of groups (ii) and (iii). Thus we may write

L=mg+L; M=M,

where L, and M, are the force and couple due to the aerodynamic forces alone.

The specification of L, and M, is complicated (z) by the presence and effect upon the air
flow of the burning gases ejected from the rocket, and (5) by possible asymmetries in design
of the projectile such as curvature of the tube, distorted fins, etc.

Suppose that Lg and Mj represent the aerodynamic force and couple which would act
on the projectile under the same conditions of motion (velocity, spin, yaw, rate of yawing,
etc.) when no gases are being ejected from the exit plane, i.e. which act upon the equivalent
shell. In order to tackle the problem of estimating L, and M, the following assumption
is made:

A 2. The gases ejected from the exit plane of the rocket during burning have no effect upon the air
stream except at and behind the exit plane, and the force L, and couple M, are related to those Ly and
M acting on the equivalent shell in the following manner:

L,=Le+L, M,=M+M, (3:51)
where L, = f pdS, M,=| Rxpds. (3:5-2)
So So

Here the notation employed is that of § 2, the vector R denoting distance from the centre
of gravity, and the vector p — pk — pOK

denoting the difference at the exit plane between the gas pressure and the air pressure on
the projectile.{ In effect L, and M, are corrections for gas pressure and absence of base
drag at the exit plane.

Assumption A 2 clearly cannot be expected to hold for rockets whose nozzles are not
situated at the rear of the projectile. For normal rockets where the exit plane is the part of
the projectile farthest to the rear the assumption is probably justified. The form of L, and
M, and the magnitude of p are discussed in § 3-55.

At this point it is convenient to introduce a number of definitions.

DeriNtTiON 1. The axis of the equivalent shell OC, is defined to be the direction close to that
Joining the centre of gravity O o the tip of the nose, such that when the projectile is moving with a constant
velocity along a straight line in the direction OC,, then

LSXOC():O’ MSXOCO=O.

1 If we had not made the assumption that S, was plane then p might have been a function of R. Thus
in the case where a multiple nozzle system is used and the exit plane of each individual nozzle is perpendicular
to its axis the couple may not be negligible, as it is shown to be in § 3-55. The modifications necessary to
include this case are not difficult to make and amount, in effect, to a change in the definition of G;.
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The following assumption is made in this connexion:.

A 3. OGQ, exists, is unique, and is fixed in direction relative to the shell.
It is possible that two different directions OC{’ and OC{ may exist for which

L;xOC® =0 and Mgx OC® = o.

We shall not consider this case. It would, however, be possible to take it into account by
modifying the theory, although the treatment would then become considerably more
complicated; the direction of OC, would in this case be chosen to be such that My x OG, = 0,
since the aerodynamic couple is of greater importance than the cross force.

DEFINITION 2. The rocket’s axis OC, is defined to be that of the equivalent shell.

The choice of axis which we have made is rather artificial in some ways, since it is not
amenable to very precise measurement in practice. On the other hand, all definitions in
terms of the geometrical form of the rocket} are distinctly unsatisfactory owing to the
considerable asymmetries which occur in practice.

DeriNiTION 3. The equivalent shell is said to be an ideal shell if the following two conditions are
satisfied:

(a) Its external surface possesses symmetry of order greater than 2 about an axis of symmetry which
passes through the centre of gravity (see § 3-4).

(8) Reflexion of the external surface about any plane through the axis of symmetry is equivalent to
a rotation about the axis of symmetry.

The condition (5) excludes shell with offset fins, for example.

It follows from condition (a) that the axis of symmetry of an ideal shell is identical with
its axis OC, (as defined by Definition 1), and from () that My. OCy = 0 when the spin
about the axis is zero. It is, of course, not necessary for OC to coincide with OG, or for
A and B to be equal.

By virtue of Assumption A 2 it remains to specify the force L and couple My acting upon
the equivalent shell. In order to do this, we first investigate the force system for an ideal
shell moving in still air, and then examine what additional modifications are necessary
(i) when there is a wind, (ii) when the projectile (i.e. the equivalent shell) possesses offset
fins, and (iii) when the projectile is slightly asymmetrical. The results if these investigations
are collated in § 3-56, where the full aerodynamic force and couple system acting on the
rocket is stated.

3-51. The aerodynamic force system on an ideal shell moving in still air

Let L, and M, be respectively the total force and couple about the centre of gravity
acting on the ideal shell. Let R and T' be the components of L; and M, along the axis OG,.
Write L,=R+F, M,=T+G, (3:51-1)

where F and G represent the combined lateral force and couple acting perpendicular to
the axis. By Definition 1, both F and G vanish when the projectile is mov1ng along OGC,in
steady motion with no yaw or rate of turn.

t+ For example, (i) the line joining the nose tip to the centre of the exit plane or (ii) the axis of the nozzle.
These two lines need not even pass through the centre of gravity.
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It is convenient to split the force F and couple G each into four parts:
Thus the total aerodynamic force and couple system consists of five forces and five couples.
These ten components are described and named in §§ 3-512 to 3-5186, i.e. they are attributed
to various ‘causes’ such as cross-velocity, cross-spin, etc. The method by which the eight

components of F and G are deduced from the Assumption A1 and from Definition 3 is

briefly sketched in the following subsection § 3:511, which may be omitted by the reader
if desired.

3-511. Deduction of the lateral force system

The material of this subsection is due, in the main, to Nielsen & Synge (1946, §4) and to
Kelley, McShane & Reno (1949?). It is included here for the sake of completeness, but
in an abbreviated form. The notation used is employed only in the present subsection and
in §§3-517 and 3-54.

Let F}, F, be the components of F along any two perpendicular directions fixed in the
body and lying in a plane normal to OCG,. Let G, G,, V], V;, 0, and v, be the corresponding
components of G, V and w. The following assumptions are made.

Ad. When Vi, =V, = 0, w; = 0, = 0, the lateral force and couple components F,, F,, G, and G,
vanish or can be neglected.

;> de;’ IV du;
exist and are continuous for the ranges of linear and angular velocity considered.

In simple language these assumptions assert that, to the order of approximation allowable
by Assumption A 1, each of the four quantities F;, F,, G, and G, is.expressible as a linear form
in the four quantities V], ¥, w; and w,. These linear forms do not possess constant terms, by
Assumption A4, so that the lateral force and couple system is describable by sixteen real
coefficients. It is not assumed at this stage that these sixteen coefficients are independent
of I}, V,, v, and w, and their derivatives.

So far none of the special properties of the ideal shell have been used. We now make use
of the first property, namely, condition (a) of Definition 3. Let n be the order of symmetry
of the shell. Then, since the external form and centre of gravity are unaltered when the body
is rotated through 27/n about its axis of symmetry, the force system must be unaffected by
such a rotation. When this is expressed in mathematical form the number of different

coefficients reduces from sixteen to eight provided that (see chapter 12, Kelley, McShane
& Reno 1949?)

A5 Fori=1,2,7=1,2,

etmin £ 1

i.e. provided that n>>2, and the lateral components can then be expressed in the simple forms
F* = F|+iF, = fi V* 4 f0*, (3-511-1)
G* = G, +1G, = g, V* 4 g,0*, (3-511-2)

where f,, f5, 8, and g, are complex quantities, and

VE =V, iV, 0* = 0+ v, (3-511-3)
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The value of G* depends, of course, upon the position of the point about which moments
are taken, in this case the centre of gravity. Ifa different point O’ at a distance z on the axis
forward of O is chosen, it is easy to show that the new coefficients (denoted by dashes) of
the new ‘complex’ lateral force F*' and couple G*’ are given by

N =S fi =fitizh, a=8—1, LH=g+iz(e—f)+2. (35114
These equations may be regarded as a transformation 77(z). It is easy to see that f;, f,+g;
and f, g,—f,g, are invariants of the transformation, and that any such invariant is a function
of these three expressions. Accordingly, if the four complex coeflicients fi, f;, g; and g, are
connected by any functional relation, it can only be of the form{

O(f1, fo+ 815 f182—1281) = 0.

Remarks on the Assumptions A4 and A'5. Assumptions similar to A4 and A5 are stated or
are implied in the work of Nielsen & Synge (1946) and of Kelley, McShane & Reno (1949?).
The first is equivalent to assuming that the lateral forces and couples which act in unsteady
motion are of the same character as those which act when the motion is steady, i.e. it is
assumed that although the coeflicients f,, f;, g, and g, may possibly be affected by the rate
of changef of V, r, V}, V,, v, and w,, no extra forces and couples are required to describe the
motion. It would, of course, be possible to cater for such extra forces in the theory. For
example, the effect of rate of change of cross-velocity and cross-spin could be allowed for
by the addition of terms f;(dV*/dt) + f,(dw* |dt) and g4(dV*|dt) + g,(dw* |df) to the right-hand
sides of equations (3-511-1) and (3-511-2) respectively. This would increase the number
of lateral forces and couples from eight to sixteen, and would contribute terms in dZ/dt
and d2{/d#? to the general equations. In view of the lack of information on unsteady motion,
it is considered that such an extension of the force and couple system is not justifiable at
present.

3:512. Axial drag and torque
The axial drag is due to the resistance of the air to the projectile’s forward motion. It is

denoted by R = —ROGC, = —R, 120G, (3-512:1)

The dependence of the coefficient R, upon velocity, etc., and the relation between R and
the ordinary tangential drag used in standard trajectory calculations is discussed in § 3-518.

The axial torque exists only when the projectile is spinning about its axis, and acts in a
direction opposing the spin. It is denoted by

I = -T0G, = —T,aVrOG,. (3-512-2)

For finless projectiles T' is due almost entirely to skin friction. When the projectile has fins,
there will be a considerable contribution to I' from the normal force on each fin due to the
relative motion of the fin blades to the air stream caused by the axial spin (see § 3-53).

1 The assumption f;+g, =0 (i.e. in the notation of § 3:-517, k¥’ = kd,, ky = k,,d;) is one which would be
consistent and which might, at first sight, be expected to hold, especially for finned rockets. It is not, however,
borne out by experimental evidence, which indicates that the cross-spin forces are larger than this relation
would imply. This evidence is also corroborated by theoretical investigations of the analogous two-dimensional
case which have shown that a considerable part of the cross-spin force and couple is due to the vorticity
which is developed in the wake as a result of the unsteady motion of the aerofoil.

1 For the effect of linear and angular acceleration on the coefficients see § 3-518.
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3:513. Force and couple due to cross-velocity ,
By cross-velocity is meant velocity perpendicular to the axis. We denote the force by L,
and the couple (about the centre of gravity) by M. Their directions are given by

L, =L,0S" = L,cosecd(OC,cosd—OT), (3-513-1)
and M, = M,0S =M, cosecdOG,x OT, (3:513-2)

so that L, acts in the plane of yaw, and M, about an axis normal to this plane, M, being
positive when the moment is stabilizing. We write

L, =kV%, M, =kd V?%. (3-513-3)
The quantity 4, may be regarded as defining the distance of the associated centre of pressure
to the rear of the centre of gravity.
In the literature the force L, is also called the normal force, and M, the righting moment
or stabilizing lift moment. The relation between L, and the lift is given in § 3-518.

3-514. Force and couple due to cross-spin

By cross-spin is meant the rate of turn w of the axis. The force and couple are denoted
by L, and M, respectively, where ‘
and M,=—-—M,v"», (3:-514-2)
so that L, acts in the plane of yawing, i.e. in the instantaneous plane in which the axis is
moving about the centre of gravity; M, acts about an axis normal to this plane and M, is
positive when the couple resists yawing. Write

Ly=FVo, M,=Fkd,Vo. (3:514-3)
The form and magnitude of the coefficients £ and £’d, are discussed in § 3-518.

3-515. Magnus force and couple due to cross-velocity

This force and couple are due to the lateral movement of the projectile in the air stream
and the axial spin. The spin causes a circulation to take place round the projectile and thus
produces a force L; at right angles to the plane of yaw and a corresponding couple M,.

Their directions are given by L, = L, cosec50C, x OT, (3-515°1)
and M, = M;08 x OG, = M, cosec §(OT —OC, cosd). (3-515-2)
We write Ly = kyrVo, M, =k, d;rVo. (3-515-3)

The quantity d; determines the distance of the associated centre of pressure behind the
centre of gravity.
For a discussion of the form and magnitude of the coefficients £,, and %,,d; see § 3-518.

3:516. Magnus force and couple due to cross-spin’t
A similar Magnus force L, and couple M, are caused by the angular velocity of the axis.

Their directions are given by L, — Lo o, (3:516:1)

1 The force L, and couple M, are not included in the force system of Fowler ¢t al. (1920). Their intro-
duction is due to Nielsen & Synge (1946) who found that they were necessary in order that the force system
might be consistent and independent of the position of the point about which moments are taken. They are
also responsible for the introduction of the cross-spin force L, into shell ballistics; this force had, however,
been taken into consideration in rocket ballistics previous to the work of Nielsen & Synge.

Vor. 241. A. 59
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and M, =—M,07'w x OC,. (3-516-2)
We write L, =kyro, M,=k)dro. - (3-516-3)
The coefficients £}, and k},d, are discussed in § 3-518.
3-517. Summary of the force system on an ideal shell
From the formulae given in the preceding subsections we have, by Assumption A 1,

L,

L, = —ROC,)+51(0C,~ OT) + 22w x 0, 12 0C, x0T - 240, (35271)

and M, = —T0C,+ 210G, x 0T 2, 2
On substituting for L,, L,, ..., M,, M, in terms of the eight coeflicients &, &', &, k), d,, d,, ds

and d,, and resolving along the directions OG,, OA;+:0B,, OZ and OX+:0Y, we
obtain, by Assumption A1, :

(0G,~0T)~iwy 5 0C,  (3:517:2)

L,.0C,=L,.0Z = —R= R,V (3-517-3)
M,.0C,=M,.0Z = —T'= —T,aVr, (3-517-4)
L,.(OA,+iOB,) = e ¥ {(kV— ik, 1) VE— (ik'V+K)pr) i(d/dt)}, (3-517-5)
M,.(OA, iOB,) = e=¥ {— (ikd, V+ky,dyr) VE-+ (—Kd, V ik} dyr) i(dC/dt)},  (3517-6)
o Ly—ily_  L,—iL,d(
L, (OX+i0Y) = -8 my 2= B e

RV —ikyyr) VE+ (K V—ik,7) (dJd)—RC,  (3:517°7)

iM, My Myt M, d¢
h} = w dt

— (ikd, V- kg dyr) VE— (i dy V+-Koyd,r) (dCJdf) —TC.  (3-517-8)

The connexion between the coefficients of — VE and i(d{/dt) in (3-517-5,6) and those
of V* and 0* in (3:511-1, 2) is now clear. Take OA; and OB, to be the instantaneous posi-
tions of the perpendiculars to OC, about which F, G, V and w are resolved in § 3-511. Then

and  M,.(OX +i0Y) = — I'¢

we have F* — F.(OA,+iOB,) = L,.(OA,+iOB,),
G* — G.(OA,+iOB,) = M,.(OA, +iOB,),} (3-517-9)
Vi, = V.(OA,+iOB,) = — VEe ¥,
and 00, = w . (OA, +-iOBy) = i(dl/dt) e, (3-517-10)
so that fi=—kV+ikyr,  fo=—k'V—Fkyr, } (3:517-11)
g, = ikdy Vi-kyydyr, gy = —KdyVtikiyd,r.

With the help of these four relations we can write the formulae (3:511-4) in terms of the
eight real aerodynamic coefficients and so display their interdependence. Let asterisks
denote values of k, kd,, k', k', kyy, ks, ds, k3 and £}, d, when the moments of the aerodynamic
forces are taken not about the centre of gravity but about a point on the axis a distance z
forward of it. We use asterisks in place of the dashes employed in §3-511 because of
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the dashes already occurring on certain of the symbols. Then, by equating real and imaginary
parts in (3-511-4) and using (3-517-11), we obtain

k* =k, K% = K +zk,
(3-517-12)
K*d* = kd,+zk,  K*d¥ = Kdy+z(kd, + k') + 2%k,
d % = kit = Kyt 2k
n Mo Mt Eg } (3-517-13)
B d¥ = kydy+zky, KEdE = K d,+z(kydy+K) + 2%,

3:518. Remarks on the force system and the associated coefficients
The five forces and five couples have been expressed in §§ 3-512 to 3-516 in terms of the
velocity of the centre of gravity V, the yaw 4, the axial spin 7, the cross-spin w, and of the ten

coeflicientst R,Ty kK, ky Ky kdy, Kdy, kyydy, K)yd,. (3-518-1)

Itis not intended to convey by these expressions that these ten coefficients are independent
of V, 0, r and w, but only to indicate the chief quantities upon which the forces and couples
depend, and to display the approximate nature of this dependence. In general, the ten
coefficients will depend} upon (i) the size and shape of the projectile, (ii) the density, tem-
perature and viscosity of the air, (iii) V, §, r and o, (iv) the rate of change of ¥, 8, r and w and
their derivatives, and (v) the position of the centre of gravity of the projectile (which moves
during burning). Of these the first group does not vary during the motion, and the second
only very slowly. It is the third group which is of greatest importance in the majority of
cases, and since d, » and a,,7/V are small, by Assumption A 1, most of the variation of the
coefficients is due to changes in the forward velocity V. When the velocity is subsonic the
ten coefficients will, apart from the effects of groups (iv) and (v), usually be approximately
constant, but may increase (or decrease) sharply as the velocity approaches and passes
through that of sound; at supersonic velocities there is usually a tendency for the coefficients
to decrease (or increase) slowly with increasing velocity.

The effect of group (iv), i.e. of unsteady motion, upon the coefficients is not known. It
is thought that of the various factors affecting the coefficients, the linear acceleration of the
rocket along its trajectory during burning is likely to be by far the most important.§

1 The four moment arms d;, dy, dy and d, occur only in the combinations kdy, k'dy, k,,d; and k3 d,, and these
last four quantities are therefore regarded as the relevant coefficients. It may happen, for example, that
k' =0, but this does not necessarily imply that £'d, vanishes. Although the notation is open to criticism on
this and other accounts, no confusion is likely to arise, and the present notation, which is based partly on
tradition and partly on practical convenience, has been retained.

I This dependence is usually stated most conveniently in terms of non-dimensional quantities such as
the Reynolds number and the Mach number. ’

§ A considerable amount of theoretical work has been done on the effect of unsteady motion on the forces
acting on a two-dimensional aerofoil. See, for example, the work of Glauert and others as described in Glauert
(1929) or Durand (1935, vol. 2, Chapter 5). For an aerofoil of this type the contributions to the lift and
moment due to variable velocity would appear to be by no means negligible. Further theoretical work on
the unsteady motion of such an aerofoil has been done more recently for both subsonic and supersonic
velocities. However, for aerofoils of small aspect ratio, such as the rocket, no reliable information on the effect
of acceleration is available. Nevertheless, it is natural to suppose that the effects will be similar in character
to those worked out for the two-dimensional case. Thus it is to be expected that acceleration along the
trajectory will increase both the lift and the stabilizing moment, and that this will be most marked near
launch when the velocity is low.

59-2
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No general statement can be made as to the effect of group (v) upon the coeflicients, as
this will depend very much upon the design of the individual rocket considered. For pro-
Jectiles possessing a high propellant-total weight ratio considerable changes in the coeffi-
cientst may occur during burning unless the centre of gravity of the charge is close to the
centre of gravity of the complete projectile.

At this stage it is not assumed that any of the ten coeflicients or any combination of them
is constant. In order to obtain approximate solutions convenient for numerical application,
it will be necessary, however, to make assumptions of this kind later on. These assumptions
are listed in § 3-6 together with comments upon the extent to which they are justified (see
also § 6-1).

The drag. In work on aerodynamics and ballistics the drag is usually taken parallel to
the air stream, i.e. in the direction opposite to OT, the tangent of the trajectory, and not
parallel to the axis as has been assumed here. Because of Assumption A 1, however, the
‘tangential drag’ is L, OT = —R,

so that, for small yaws and cross-spins, the axial and tangential drags are the same.

The lift. The lift is usually defined as being perpendicular to the air stream. The force
system developed in the preceding pages does not include a lift, its place being taken by the
normal force L;. For an unrotated rocket w1th no axial or cross-spm the relation between
the lift L], the normal force, and the drag is

L= L,cosd—Rsind=L,—RJ. (3-518-2)
Accordingly, if L =k'V%, (3-518-3)
we have k' =k—R, (3-518-4)

The order of magnitude of the various forces and couples. 'The eight lateral forces and couples
L, M, (: = 1—4), are first-order quantities in ¢ and o by definition. Similarly, because of
Assumption A 1, I' may be regarded as a first-order quantity in ar/V, since we may write
it in the form

P FA V’

which is analogous to M, = kd, V?0.

For the motion of a shell along the whole trajectory the resistance R cannot be regarded
as a first-order quantity. However, during the burning period of the rocket it is small in
comparison with the axial component of the thrust (see Assumption A9 in §3-55 below).
Since we are only interested in the application of the theory to the period of burning of a
rocket, we may regard R as being a first-order force.

With these conventions, it follows that first-order variations in V, r and the ten coefficients
(3-518-1) will produce second-order variations in L;, M;, I' and R which can be neglected
under Assumption A 1.

In the equations of motion the lateral aerodynamic force and couple components of L,
and M, occur side by side with ‘jet’ force and couple components of the orders of magnitude of

QW¢, QWZ, QWap, Qrla, (forces),
QWIL, QWIZ, QWi Qrl%a, (couples),

+ Not only the moment coeflicients, but the force coefficients £ and £}, will alter (see equations (3-511-4)).
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where a, is one of the angles defined in § 3-214. These forces and couples are also regarded
as first-order forces and couples.

We have, accordingly, set up a scale by which it is possible to state which forces and couples
are to be regarded as of the first order and which of the second order. Those of the second
order are neglected under Assumptions A1 and A9. For example, R{ is a second-order
force according to our convention, since it is small in comparison with the first-order
force R. Itis scarcely necessary to remark that this division of forces and couples into groups
of different orders of smallness cannot be infallible, and that cases will arise in practice
where the conventions adopted do not apply, and where more careful examination of the
relative magnitudes of the different forces and couples is therefore essential. It is, however,
clear that, if a general theory is to be developed, some scale of magnitudes must be set up in
order that the number of terms included in the equations may be kept within reasonable
bounds.

3-52. The effect of wind upon an ideal shell
The presence of a wind alters the direction and magnitude of the resultant air stream.
Relative to the air the projectile moves with a velocity

V—wOW. (3-52-1)
The component of this velocity along the axis is
Wy = 0G,.(V—wOW) = V—wcos§, = V—wcosé, (3-52-2)

by Assumption A 1, since w/V and { —§, are first-order quantities. This is also, to our order
of approximation, the total velocity. The component of the velocity perpendicular to the
axis can be written in the complex form
(V—wOW).(0OA;+:0B)) = e ¥ {—VE—wsin{e¥1 4wl cos £}

w
14
by (8-32-1) and Assumption A 1, and V may be replaced by ¥}, in this formula since second-
order quantities are neglected.

This shows that the wind has two effects, (i) that due to the additional forward velocity
—wcos¢ of the projectile relative to the air, and (ii) that due to the additional cross-wind
wsin{. We examine first the effect of (i).

By Assumption A 1, w/V is small, and therefore the additional forward velocity of —w cos&
relative to the air is equivalent to a first-order variation in V. By virtue of the remarks at
the end of §3-518 the effect of this extra velocity upon the lateral and axial forces and
couples can be neglected during burning in the rocket application.

We now examine the effect of the cross-wind wsing. With the same assumptions as in
§ 3:511, this will introduce an ordinary force L and couple M}, and a Magnus force L} and
couple Mg, due to the complex yaw

— Ve—fvf(3+ singefén), (3-52-3)

Vsingei‘a’l = —le; (3:52-4)

L} and Mj act in the plane of this yaw, and Lj and Mj perpendicular to this plane. Write
L;=Li+L;, (8-52-5)

M;=M;+M;, (3:52-6)

so that L; and Mj are the total force and couple due to the wind.



486 R. A. RANKIN ON THE MATHEMATICAL THEORY
Then, as in § 3-517, we have

0C,.L; =0Z.L; =0, (3-527)
0C,.M,= OZ.M, = 0, (3-52-8)

(OA,+iOB,). L, = —w, =¥ (—kV -+ ik,,7), (3-52-9)

(OA,+iOB,). M = —w, e~ ¥ (ikd, V-+ky,dyr), (3-52-10)

(OX+i0Y).L} = —w,(—kV +iky,7), (3-52-11)

and (OX+i0Y) .M, = —w, (ikd, V+k,,dy7). (3-52-12)

The coefficients £, k,,, kd, and k,,d; can be taken to be the same as for motion in still air,
since the change in them due to the wind produces a second-order effect on the lateral
components of the forces and couples, and this can be neglected.

3:53. The effect of offset fins

We consider a projectile with symmetry of order greater than 2 which is fitted with
offset finst in order to cause rotation or to prevent rotation being damped out. Fin assemblies
may be of various types. We restrict ourselves to the consideration of the following common
type.

The fin unit consists of a number of thin blades, called the fins, which are rigidly attached
to the body of the projectile. Each fin surface forms part of a helical surface whose axis is
the axis of symmetry of the projectile OG,. Such a surface has the representation

x=pcosl, y=psinl, z=P0,

in terms of the variable parameters p and §. Here #, ¥ and z are measured along axes fixed
in the body, the z-axis coinciding with OG,. The pitch} P is assumed to be constant. The

inclination of each fin to the axis is

A, —tan"14, (3-53-1)

at a distance p from the axis. We make the following assumption.

A 6. At each point of any fin A, is small (say <15°).

It follows that we can put »
A, =L, (3-53-2)

For similar fins of the same area and span which are not offset (A, = 0), the projectile
is an ideal shell, and the force system derived in §§3-51 and 3:52 applies. We regard the
projectile with offset fins as a modification of this ideal shell and consider the effect upon
the force and couple system. The projectile has the same order of symmetry as the ideal
shell, and its force system can therefore be described by means of five forces and five couples.
This is true, since the only place where condition (b) of Definition 3 was applied in §§3-51
and 3-52 was in the specification of the form of I in § 3-512.

t It follows that there are at least three fins.
% There are two definitions of pitch in common use. We use here the definition employed in mathematical
literature, namely, the distance travelled per radian; to obtain the engineers’ pitch this should be multiplied

by 2.
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It follows that, since A, is small, that the effect of offsetting the fins is of the second order
on the lateral forces and couples and can therefore be neglected; the effect upon the axial
drag is also of the second order in the application to the rocket, and is neglected (see end of
§ 3-518). The axial torque will, however, be different from that which acts in the case of the
ideal shell. There will still be a damping couple which we can write

I =—T,aVrOGC,, (3-53-3)
as in the case of the ideal shell, since variations in I, due to offsetting will produce second-
order variations in T'.

The additional torque I', due to offsetting may be regarded as being caused by the com-
bined effect of the normal forces on each fin. Let p = a5 be the distance from the axis of
the point of application of each such fin force, and write A, = A at this point. Then we put

‘ I, =TI V2A,0G,, (3-53-4)
where I'; is an aerodynamic coeflicient which may be considered to be largely independent
of A;. The angle Ay is positive when the fins are inclined so as to impose clockwise rotation
when viewed from the rear. When the fins are not offset Ay = 0, so that I, vanishes.

If the fins are not too small, nearly all the damping couple is due to the fact that, because
of the lateral velocity pr of each part of the fins, the true angle of incidence (downwash being

neglected) is not A, but A,V — p(;_)“{?) (3:53-5)
by Assumption A 1. At the centre of pressure of a fin this is

Ap—agr/V.
Hence in this case we have Tya= | , (3-53-6)

approximately. For the purpose of developing the theory, however, we only require
(3:53-3,4) and need make no assumptions regarding the coeflicients I'; and I'; at this stage.

Drum fins. In many cases the fins are wholly or partly enclosed by a cylindrical drum
coaxial with the axis of the projectile. Formulae (3-53-4, 6) can be used in this case also,
although the values of I';, I'; and a will be different, in general.

The effect of wind. We saw in § 3-52 that the effect of the wind on an ideal shell was to
introduce an extra lateral force L; and couple M;. The change in this force and couple due
to offsetting the fins is of the second order, and so is the effect of the wind upon the axial
torque I',. It follows that the extra forces and couples due to the wind can be taken to be
the same as those which act upon the associated ideal shell (i.e. the same shell with straight
fins).

Summary. The presence of offset fins introduces a couple ', defined by (3:53-4). The other
forces and couples are the same as those which act upon the projectile when fitted with
similar straight fins.

3-54. Asymmetrical projectile

We consider here the forces acting upon the rocket’s equivalent shell when the form of
this shell departs slightly from that of the symmetric shells considered in §§3-51 to 3-53.
The conclusion we obtain is that, provided that the departures are of the first order, their
effects upon the force and couple system are neghglble to the order of approx1mat10n to
which we are working under Assumptions A1 and A 9 (see § 3-55).
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The reader may take this for granted if he wishes and omit the remainder of this section,
which defines what is meant by first-order departures and justifies the previous statement.

We return to the notation of § 3-511 and denote by F), F,, G, and G, the lateral force and
couple components as before. Dashes denote values applying to the asymmetrical equivalent
shell. For an ideal shell or one such as considered in § 3-53, we have, for motion in still air,

F* = fiV*¥+f,0*, G* =g, V*4g,0%, (3-54-1)
asin (3-511-1,2), where f,, f,, g, and g, are complex quantities.

Owing to the asymmetry of the equivalent shell a representation of this type in terms of
eight real coefficients is not possible, and sixteen coefficients are required. We may accord-
ingly write

P = i VRS b i VR4 f%, §F = V¥ g g V* g%, (3:549)
where the f;, g (i = 1,2, 3, 4) are complex quantities and the bar denotes a conjugate value.

Similarly, we have R =—R,7?0C,, R’ =—R,1720C,,

r=-Ial,0C,, I'=-1%al,0C, (3-54-3)
I, =I120G,, Iy = I 720G,.
We make the following assumption:

AT, There exists a symmetrical shell of the type considered in §§ 3-52 or 3-53 such that departures

of the equivalent shell from the form of this shell are of the first order, i.e.
|\ fi—=Sil, |Sfs| are small in comparison with | fi],
| fo—S2l, | fi| are small in comparison with | f, |,
|gi—gi |, |gs| are small in comparison with |g, |,

|gs—g2|, |gs| are small in comparison with |g,|,

|R,—R,| s small in comparison with R,
|Dy—Ty | is small in comparison with Ty,
|Tp—T%|  is small in comparison with  T'p.

These conditions are not, of course, likely to be of much value as a practical criterion.

As a consequence of Assumptions A 6 and 7, it follows that the replacement of Fy, Fj,
G, G, T, and T'y by the values Fy, F,, G, G, I'; and I'y appropriate to the symmetrical shell
introduces second-order terms which are negligible by Assumption A 1. The substitution

“of R, for R/ can also be neglected according to our convention, since R is small in comparison
with the axial component of the thrust during burning. See Assumption A9 in §3-55, and
the remarks at the end of § 3-518.

It has been assumed here that the motion takes place in still air. This has been done for
simplicity and clearly does not introduce any fresh considerations provided that we regard
V as the velocity relative to the air in (3-54-1 to 3:54-3).

DerFINtTION 4. The symmetric shell from which the actual equivalent shell differs is called the
associated symmetrical shell.

It follows that the associated symmetrical shell is either (a) an ideal shell as defined by
Definition 3, or () a shell with offset fins of the form described in § 3-53.



OF THE MOTION OF ROTATED AND UNROTATED ROCKETS 489

3:55. The aerodynamic jforces on the exit plane

We consider here the force L, and the couple M, which were defined in (3:5+2). The
following two assumptions are made. The first is analogous to that made in § 2-5 concerning
the variation of puy.

A 8. Variations in the pressure P across the exit plane may be neglected.

Thus we have, since X is the area of the exit plane,

L, =p2,0K, M, =pZR;xOK = —pZ,ION’ x OK. (3-55°1)
The second assumption has already been partly used in the preceding sections.

A9. During the burning period
R, p%, and mgcosa

are small in comparison with the thrust QW.
Accordingly, by Assumptions A1 and A 8, we have

L,.0Z =L,.0C, = p%,, (3-55-2)

M,.0Z =M,.0C, = 0, (3-55-3)

L,. (OX+i0Y) = pZ,(ap €+én0 4-£), (3:55-4)

and M,. (OX +i0Y) = ipZ,l(ay o +2) — g cio+0), (3-55+5)

Because of Assumption A 9 and the remarks on orders of magnitude at the end of § 3-518,
the right-hand sides of equation (3-55-4, 5) are second-order terms and may be neglected, i.e.
L,.(0OX+:i0Y) =0, (3:55-6)

and M,.(0X+:0Y) = 0. v o (8+55°7)

3:56. Summary of the aerodynamic forces and couples

By Assumptions A 1 to 9, the aerodynamic forces and couples acting upon a rocket durmg
burning are:

(i) The force L, and M, defined by (3-5-2). The components of L, and M, are given by
(3-55-2 to 3-557).

(ii) The force L and couple My acting upon the equivalent shell. These may be taken to
be the force and couple acting upon the associated symmetrical shell, and consist of the
following:

(a) A force which is the sum of the forces

L,=R+L,+L,+L;+L, (st air),
_ L;=L+L; (wind).
(b) A couple about the centre of gravity which is the sum of the couples
M,=T+M,+M,+M;+M, (still air),
M, =M;+M; , (wind),
| : (offset fins).

The components of these forces and couples along OX, OY, OZ and OA,, OB, OC,
are given in equations (3:517-3 to 3-517-8), (3-52-5 to 3-52-12) and (3-53-4).

Vol. 241. A. 60
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Assumption A 7 restricts the form of the external surface of the projectile to such forms
as are approximately those of ideal shells except that the fins may be offset each by an equal
amount. Thus rockets possessing symmetry of order 2—e.g. projectiles with two fins or
projectiles driven by two cylindrical motors placed side by side—do not come under con-
sideration. It is necessary to make these exclusions when three-dimensional motion is
considered, since the behaviour of such a projectile varies according to its initial orientation.
When the motion is purely two-dimensional, however, the theory can easily be made to
apply to projectiles of this type.

3:6. ASSUMPTIONS

The assumptions made during the course of the investigation fall into three groups.

Assumptions A are made at the outset and are necessary if any progress is to be made. They
are sufficiently general to enable the theory to deal with all types of rocket motion (using
solid fuels) which can be foreseen at present. At the same time they exclude unnecessary
complications which are not vital to the investigation.

Assumptions B consist of reasonable assumptions (for the most part relating to the aero-
dynamic coefficients) by means of which the equations of motion can be solved mathe-
matically in explicit, though possibly complicated, forms.

Assumptions C consist of more drastic assumptions which may not hold for several types of
motion, but which cause considerable simplifications in the mathematics, and lead to
solutions which may conveniently be used in routine numerical computations. Even where
the assumptions are not strictly valid, these solutions may have a qualitative if not an
accurately quantitative value.

3-61. Assumptions A
These consist of the assumptions made in § 2, in particular the more specialized assump-
tions of § 2-5, Assumptions A 1 to 9 of §§ 3-3 and 3-5, and the following six assumptions.

A10. The following forces are of the second order (in comparison with the thrust QW) and can be

neglected.: , QU @_1
m dt

2 Q2ql

b b

A11. The two transverse moments of inertia A and B are approximately equal, i.e. | A—B| is
small in comparison with A.

A12. g, s small in comparison with [.

The distance ¢, is defined by (2-4-10). The assumption may be justified by the following
rough argument which applies to an unrotated rocket. It can be modified to make it apply
to rotated rockets.

By (2:64) [ voar ——qqm,
B

where n is the unit vector OG. Suppose that % is the volume occupied by the burning gases
in the rocket. Except for those parts of € which are contained in a thin layer next to parts of
the boundary (the burning surface of the charge and the forward end of the combustion
chamber) the gas velocity v is approximately along the rocket’s axis. Let %, be this region.

Then in %, we have |vxn|<ve
Y%
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where ¢ is small. The mass of the gases in € — %, is small in comparison with the total mass
of gas in % and its velocity is low in comparison, so that we have

Rxvpdr = [ Rxvpdr and [ vedr=| vodr,
f% X vpdr “ XVpdr an ALy %Vp T
approximately. For convenience we measure the vector R from a fixed point A half-way
between the head of the combustion chamber and N the centre of the exit plane, and assume

that the total distance between these points is less than 2/ (i.e. the centre of gravity lies
forward of H). Then | R|<!/in ¥ so that we have, from (2-4-10),

Qq,9, = —nj%(RXV) pdr = —n.f%l (RxV)pdr

[ r. (nxv)pdr<lefg vpdr
1

%
f ‘ vpdr J%Vp dr

= Qq,le.

= [e = [e

Hence ¢,<le.
A13. The following quantities are small in comparison with unity:

KooK 201

m’ mV’ mV

This is true for all rockets so far investigated. The assumption is, however, not absolutely
necessary in the mathematical development, and its use can be avoided by modifying the
‘definition of the quantities A, 4,, #3 and £ which are introduced in § 4-2. See footnote to § 4-3.

A 14. Quantities which are negligible in comparison with others with which they are combined remain
negligible after differentiation with respect to the time, i.e. second-order quantities remain of the second

order after differentiation.
Thus, if we have an equation of the form

d
‘JL;(T1+T2) =T,

where T, is of the second order of smallness, then we may approximate by writing

d
dt Tl = T39

the error being of the second order.
Assumptions of this kind are common in approximate mathematical work of this nature

and are often made without explicit mention. Itis convenient to have the assumption stated
in order to avoid detailed investigations into the justification of every differentiation made.
In most cases where it is used it can be justified by means of Assumptions A1, 9 and 11. It
could, however, be justified in all cases by addition to the lists of quantities assumed to be

small.
60-2
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A 15. With the exception of the burning gases, the configuration of the component parts of the rocket
is fixed, i.e. there is no motion of the components relative to the rocket’s surface .

This last assumption excludes, for example, (i) rockets driven by liquid fuel, (ii) move-
ment of the sticks of propellant relative to the rocket’s motor, (iii) rockets carrying fins

mounted on sleeves which can rotate about the rocket’s body, and (iv) rockets carrying
liquid-filled shell.

3:62. AssumptionsIB

These assumptions, together with the Assumptions A, are used in §5 and concern the
quantities defined in § 4-2. The symbol y is defined by (5-1-1) as the ratio of the spin to the
velocity and p? is given by (5-1-4).

" B1. The following quantities are small in comparison with V| p?|:
‘ 2k, de/dt, 2«fyy, y(dp,/dt).
B2. The following quantities are small in comparison with V2| p |2:
k%, «flV, dx/dt.
B3. The quantities n3, f, and w, are constant during burning.
B4. The quantities o, and k are constant during burning.

The last assumption is not required in §5 although its introduction permits certain
simplifications.

Except when the stablhty is approximately ‘neutral’ (i.e. n? = 0), n? = kd, /4 is large in
comparison with ¢, so that n} = »? (see (4-2-2)). Similarly, it is probable that f—pf, is small
in comparison with f, and that @ — w, is small in comparison with @ provided that the centre
of gravity and the centre of pressure of the Magnus couple M, are not too close together.

Accordingly, except in these special cases, Assumption B3 may be replaced by the
equivalent assumptions respecting 72, f and w. These quantities depend upon the aero-
dynamic coefficients and upon the two moments of inertia 4 and C, and may be expected
to remain approximately constant at subsonic velocities, provided that the variation in total
mass is not too large. The subsonic values of the quantities #? and w may be used at higher
velocities without introducing too great an error, provided that the velocity remains subsonic
for a sufficient period during the initial stages of flight. A more detailed discussion of this
is given in § 6-1. See also § 3-518.

3-63. Assumptions C

These assumptions are made in § 6 in order to simplify the solution of the equations as
far as possible. They refer to quantities defined in §§4 and 5, and are additional to the
Assumptions A and B.

C1. The acceleration is constant between launch and burnt.

It is not necessary to assume that f is constant while the projectile is on the projector, and
this will in fact be the period when the greatest variation in f occurs.

C2. The following quantities may be neglected:

K, 0y Oy f—fy, Py @

It follows from Assumptions B3 and C2 that #? (= —»2) and f are constant, and that @,
may be neglected.
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For comments on the validity of C1 and 2 see § 6-1. -

In addition to Assumptions C 1 and 2, Assumption C 3 is made in §§ 6-9 and 6-10 regarding
the variation during burning of the different terms constituting the ‘tolerance functions’
s ts and ps of (4:2:9,10,11). We may write each of gy, #,, 5 in the form

1= 3 {ap(v) +irby(v)}ap e, (863-1)

where ap(v) and bp(v) are coefficients which are constant or vary slowly during burning
(see § 6:10). The assumption is as follows:

'C 3. The following quantities are constant during burning:
ap(v) ap, bp(v)ap, ¢p (P=C,G,L,M,N,R).

In actual fact the quantities ap and ¢, will probably vary in an irregular manner during
burning, but Assumption C 38 is justifiable in order to obtain an indication of the relative
maximum magnitudes of the effects of the different asymmetrles See §§ 6-9, 6-10 for further
discussion of this assumption.

3:7. DEFINITIONS

A large number of definitions has already been made, in particular Definitions 1 to 4
of § 3-5. We collect here a number of definitions which are frequently used in the succeeding
work. Other definitions are introduced more conveniently as the need arises.

The instant of ignition is the instant at which the projectile first commences to move relative
to the projector.

The instant of launch is the last instant at which the projectile is in contact with any part of
the projector.

Burnt is the instant at which burning of the propellant ceases.

The direction of projection is that of the fixed vector OZ in figure 3. The direction of this
vector will usually be that of the axis of the projector, i.e. the direction in which the pro-
jectile first starts to move. This direction makes an angle called the quadrant elevation (Q.E.)
with the horizontal plane.

The line of projection is the line through the centre of gravity at the instant ¢ = £, parallel
to OZ.

The line of fire is the projection of the line of projection on the horizontal plane.

The plane of fire is the plane through the line of projection which is normal to the vertical
plane through the lines of projection and fire.

The rocket’s axis, the angular deviation of the trajectory from the direction of projection,
and the yaw have already been defined (§§ 35, 3-211, 3-213).

In order to calculate the trajectory (i.e. the path of the centre of gravity) and motion of
the projectile about its centre of gravity after launch, it is necessary to know the following

quantitiest at launch: d¢
I/;)s 705 ZOa =y COI (dt)t ~ (3.7‘1)

The first two are usually assumed to be known without requiring mention. The values of
the remaining three complex quantities Z, & and d{/d¢t at launch are called the initial

1 Since Zy, &, and §;, are complex, eight real quantities in all are required.
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conditions. They specify the magnitudes and orientations of the initial angular deviation,
yaw and cross-spin.
A rocket is said to be perfectly launched when, at the instant of launch,

Zy=Ey=0, {;=0. (3:7-2)

In practice, perfect launch is unlikely to occur. Its value as a concept is that, owing to the
linearity of the equations of motion, the behaviour of the projectile may be regarded as
being the sum of the four contributions due to the motions resulting from (i) perfect launch,
(ii) an initial angular deviation Z,, (iii) an initial yaw E,, and (iv) an initial rate of turn {,.
The last three are usually referred to as the effect of tip-off, since the initial conditions will
normally be due to the tilting of the projectile over the end of the projector before launch
occurs. See also § 4-4.

4. FORMATION AND REDUCTION OF THE GENERAL EQUATIONS OF MOTION

4-1. GENERAL VECTOR FORM AND RESOLUTION

Under Assumptions A, the general equations of motion of the rocket after launch are
given in vector form by (2:5-11, 12), where

L=L,+L,+L;+mg,

and M =M,+M;+M;+T,,
by § 3-56.

We now proceed to multiply these equations scalarly by the vectors OZ and OX +:0Y
in order to bring them into forms suitable for solution.

By §3-32 and Assumption A 14, we have for the linear momentum

d d v
0Z.mV = m % (VOT.0Z) = n%},
and (0X+i0Y).m 4V = (V2).

The components of the aerodynamic forces are given by equations (3:517-3,7), (3:52:7,11)
and (3-55-2, 6). The components of the force of gravity and of the ° jet forces’ on the right
of (2:5:11) can be obtained from the tables in § 3-52. Accordingly, we have

(-JK——QWJr[)Z —R— mg31noc+2Q ({— q1)+ldQ

= QW —(R+mgsina—pZ,) (4-1°1)
by Assumption A 10. In a similar way, and by virtue of the remarks on magnitudesin § 3-518,

(V) = B k) (VE+w,) + (B V ki, r+2Q1) § z

~+mgcosa+ QW{+ QWe""{ocRe"¢zz+2i;—Il/ocNe"¢zv}. (4-1-2)
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Hence, by (4-1-1) and Assumption A 9, '
VL QWE+ (kY —ikyyr) (VE )+ (K'Y — ik + 2Q1)

+mg cos QWe""{ocRei'f’n+ Qi%alvei%}. (4:1-3)

The angular momentum h,, is given by
h, = AQ,0A +BQ,0B+CQ,0C = A2+ (C—4) Q,0C—(4—B) Q,0B. (4:1-4)
Hence, by Assumptions A 11 and 14,

d d
OZ.Lh = 7(0Z.hy)

_ %{A,Jr (CQA) r—(A—B) Q, (agsin o+ 0sin (¢ +0,))}

_d
and (OX+iOY). 2h, = % (0X 1i0Y) )
df. d . B .
- Zt{zA S AL (C— ) 1({-+ € #0) —i( 4~ B) Q0 w}
{Ad€+Cr§+(C—A) o ei("'*“?"a)} | (4-1-6)
T da\d ¢ ’

The components of the aerodynamic couples are given by the equations (3:517-4, 8),
(3:52:8,12), (3:53-4) and (3-55-3,7). The components of the jet couples on the right of
(2-5-12) can be obtained from the tables in § 3:32. Accordingly we have, by (4:1-5, 6),

& (Cr) = G+ Ty V20,—T, Var—Qker, (4-1-7)

and pr {zA d¢ +Cr{+(C—A) ra, el(0'+¢g)} UG+ TpV?Ap—T, Var— Qk2r}

— (tkdy V+kyydyr) (VE+w,) + (—ik'd, V“k&d4’— QP —3iQk; + Qqy 45)dl/dt

+ei7{Gra; e+ 1QWI(ay ey —ay etz) + Q2ray by

—§Qk ray Px -+, [[i(dQ[d) — Qr] (oy €% 5 —ag €%6) + Qqy gy irag €¥a}.  (4°1-8)
Hence, by (4:1:7, 8) and Assumptions A 1, 9 and 12,

d*{ d¢(dA ) . . _
dt2§+df{ pr + QP2 —iCr+k'd, V—szd4r}+(/cd1 V—ikydsr) (VE+w,)

4
= &7{—iGray €1+ QUW —ilr) ay ety — QIWay, et —iQq, lra; eibe
+2qulraMe¢u}—z d{(A C) ra e +¢0}, (4-1-9)

The motion of the projectile is completely determined by equations (4-11, 3,7, 9).
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4-2. FURTHER NOTATION

It is convenient, at this point to introduce the following notation. Write

QW

fo= W fo =L (Rimgsina—ps,), (4:21)
n? = —p? = %—1, n} = n*—al, (4+2-2)

@ = IEA‘%, o, = @j‘é—l—%lﬂl, (4-2-3)

where 20, = %-—{c—%, 20, = %_*_%‘fg_’ (4-2-4)
2, — C k'Ad _%’ 24, — 4 k’Ad ks (4-2:5)

p= (4-2-6)

24k = QI2++dA/dt, | (4-2-7)

AN = 24k +K dy V —ir(C+ Kk}, dy), | (4-2-8)

Uy = Qpeifrt21 Il/VozN ey, (4+2-9)

r ) . . G :
Ho = T {(1 _—-ZW) aNeZ¢N——-OCRe‘¢R—Z QI/I;/Z“L eits

1—28)dA
~11‘WaGe’¢a+qu}VocMe’¢ —Z(wa) 7 mceiv‘} (4-2-10)
ps = —i(1'—28) ra e, (4-2-11)
E =Y (kdy V —iyydyr) = V2 iV, (4-212)
= (K —ikyy7), | (4-2-13)
1 ’ 7.7

Fy = L (KT ik 1-2Q)), (4-214)
2f F+d =f (k-+ay V—ifyr) dt (4-2:15)

F-1 1 .
= A() =T = S (kb VB, (4:2:16)

dF 4 "
G(s) = {E+(A-—{7) Ft dt} —{P(s)2—P"(s)

— n—iw %—Az(s) TA(s)

_ T/l_z{c:l(s) —irGy(s)}, | (4-2-17)
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where G,(5) = 2 V2312 + 2k, V+/<i— 2 dK—l— Vda‘, (4-2-18)
14 dt dt
d dr

and G,(s) = v, V—f—ﬁ’l%.——QK,b’l— %—’lé}a—f (4-2-19)
T(s) = T(s) + T5(9), (4-2-20)

where T(s) = e""‘?fz (Auy—p V), (4-2-21)
and To(s) = (i ), (4-2:22)
H = H(s) = yef® = (VE+w,) ef©. (4-2-23)

4+3. FURTHER REDUCTION OF THE EQUATIONS

On the right-hand sides of (4-1-3,9) we may replace QW by mf wherever it occurs, since,
by (4-1-1) and Assumption A 9, the error introduced is of the second order. Thus we have,
in the notation of § 4-2,

- av
==t (31)
d dC

céw(dﬁr v +Qk2) Gt T V2 AF , (4-3-2)

dZ d
/i J;(u—i—,ule’”)ﬁ—F(._.—l— V) +F, df I‘%cosoc, (4-3-3)

d? d: d
and d€+/1d§+E(_.+ ) = fu, e’ —I—dt(,use”’) (4-3-4)

By Assumptions A1 and 13, F,d{/dt is a second-order quantity and may accordingly
be neglectedt in equation (4-3-3). If we eliminate Z and { from this equation and (4-3-4),
using the relation E = {— Z, we obtain

e P rEEeae) g )

__geosay Sy W _Sym dF} 3
s (S AR Y29 ) V+w1)+ 1. (a35)
We now change the dependent variable from Z to VE and the independent variable from
¢ to s. Then (4-3-5) becomes

“Z:z (VE) +“I;Fj (VE)+ VZ{E+F(/1 IJ;)JF‘%} Ve

:_5'—9[‘,’25_"‘(1—]—;) Vz{EJrF(/l JI;+ )+‘f§} T(s). (4:3-6)

1 If the term F, d§/dt is retained in (4-3-3), the equations (4 -3:5 to 4-3-9) hold with )t+ F‘/ at

in place
l

of A, and E, pu, and — 7 (,us eio) multiplied by 1—F, wherever they occur. This amounts to a modlﬁcatlon

of the definitions of A, u,, 3 and E and of the quantities depending upon them.

Vol. 241. A. 61



498 R. A. RANKIN ON THE MATHEMATICAL THEORY
Hence, by (4-2-23),

&y A+Fdy £\ dF
et +V2{E+F(/I V)+dt}77
" /1 7
= [uh(5) + (o)) ~E55% (1) T, (4-3-7)
and therefore
d?H A, 7cosoc
’ s +G(s)H = P(s){ (s )+Vw1(5)_£T/z_ (’1"%)—71(5)} } (4-3-8)
In terms of # we obtain, by (4-3-3),
dZ _ldy d2 .7 W, ¢ S i
@ va @ Ty v tyeesetiye
Hence |47 43 oo 1, .
;E=~E T LA H(s) -+ HY (5)}+ Ty (geosatfiy o — Vs (9)). | (4:39)

Thus the four equations which determine the motion are (4-3-1,2,8,9). It is worth
pointing out at this stage that the forces L, and L, and the quantities a; and ¢, have been
omitted from these equations since they produce second order effects (cf. footnote to p. 497).

4-4. METHOD OF SOLUTION OF THE EQUATIONS

In order to determine the motion of and about the centre of gravity it is, first of all, neces-
sary to know the velocity ¥ and spin r. The former is obtained from (4-3:1). When f, and
Sz are known at each stage during burning, V' may be obtained by step by step methods of
integration. Since, however, f, is small in comparison with f,—especially at low velocities
—an approximate value of ¥V may be obtained by neglecting f, in (4-3-1). Thus we obtain

v QW  Win

& T md S
and this will hold to the same order of approximation on the projector. Hence
VeVt | W%" (4-4-2)
= Voot Wlog ™22, (4-4-3)
when W is constant. For ground firing V, is, of course, zero.
Equation (4-3-2) for the axial spin has the explicit solution
t nat" . Gy ) S
c (Grt D72 )exp{ f (TaVa-+QR) | de —}—-Croexp{ f (T, Va-+ Qk2) % }
(4-4-4)

where G+ 1"z V2Ag is a function of the time ¢/, and {I', Va-+ Q42}/C of the time ¢”.
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When no additional rotating couple acts during the interval (0, #,)—or if such a couple is
small, e.g. a frictional couple between round the prOJector—we may use the equation (4-3-2)
over the whole range and obtain

- trsen] J(nrer s ),

dt :dt +% Too exp: f (I'\Va+ Qk2)
- : : (4-4-5)
which is of a simpler form when, as is usually the case, 7y, = 0.

The velocity and spin being known, (4-3-8) must be solved in order to deterrmne H.
When this has been done, the yaw E is known, since

g = T/{H e PO —uw,}, (4-4-6)

and Z may be obtained from (4-3-9) after performing a single integration when Z, is known.
It is occasionally useful to know the cross-spin d{/dt. This is given by

Z—f = e PO {A(s) H(s) + H'(s)}+ %{g cosa+ju, e —Vwi(s)}. (4:4-7)

The solution of (4-3-8) depends upon the form of the function G(s) and upon the initial
conditions. It will be seen from (4-2-17 to 4-2-19) that G(s) is, in general, of a very compli-
cated form, so that explicit mathematical solutions for H are only possible when assumptions
have been made as to the relative order of magnitude and rate of variation with s of the
various terms which constitute G(s). In particular, the most important factor is the relation
between the spin 7 and the velocity V. If G(s) is a slowly varying function of s with no zeros
in the range under consideration, it is possible to obtain approximate solutions of the equa-
tion (see §8). The most elegant and complete solutions are obtained, however, when the
axial spin is proportional to the velocity, and this case is investigated in § 5; it includes the
case of no axial spin. §§ 6 and 7 contain solutions which are valid under less general assump-
tions such as constant acceleration.

The general solution of (4-3-8) contains two indeterminate (complex) constants, and
one further constant is required for (4-3-9). These three constants will usually be given by
the initial conditions at launch (see § 3:7). They are the values of Z, E and d{/dt at this instant,
namely Z,, 5, and {;,. The initial ®alues H, = H(s,) and H,, = H’(s,) are given, in terms

of B, and {,,, by the relations H, = V, B, +w, (s,) (4:4-8)
1 . ,
and Hy, = (o _AOHOHVO{g cos &+ fo 1 (5g) €70 —Vywy(s,)}- (4-4-9)

In the following sections the equations (4-3-8,9) are solved for Z, E and d{/dt under
various assumptions regarding the forms of the spin 7 and acceleration f. There are reasons
for obtaining Z, E and d{/dt in preference to other possible variables. If no impulsive forces
or couples act, Z, & and d{/dt must be continuous functions of the arc length s (or time ¢) at
each point of the trajectory. Their values at the end of any arc—e.g. the arc described during
the burning period—provide the initial conditions determining the subsequent motion.
A knowledge of the three quantities is therefore useful when the trajectory consists of a
number of arcs on which different conditions prevail. For a rocket the number of such arcs
will usually be two, namely, the arc described during burning and the remainder of the
trajectory. For multi-stage rockets, however, the trajectory may consist of several arcs.

61-2
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When the angular deviation Z is known, the linear deviation of the centre of gravity from
the line of projection at launch is given by the equation

Der — f " Zds. (4-4-10)

Here D cos Y is the downward component of the deviation in the vertical plane perpendi-
cular to OZ, and D sin Y'is the linear deviation to the left as viewed from the rear. The height
of the centre of gravity above its initial position at launch is, at any instant during burning,

(s—sp) sina—D cos Y cosa. (4-4-11)

Formulae for D /' are not given since they may be obtained from Z by a straightforward
integration, and for the following reason. It is during the burning period of a rocket that
disturbing factors (apart from gravity), such as wind and the various asymmetries of the
projectile, have their greatest effect, and in consequence the trajectory depends, to a con-
siderable extent, upon the direction of motion at the instant of burnt, i.e. upon the angular
“deviation of the trajectory at burnt. The actual linear displacement at burnt is usually quite

insignificant in comparison with the later displacement which is due, primarily, to the
angular deviation at burnt.

It will be observed that the right-hand sides of equations (4-3-8, 9) are linear in the eight
quantities

g5 w,(s); ap€ite, ageibe, oapetn,  a,ebu, ayeiby, aper;

and that the values of ¥ and r are independent of them.T These eight quantities correspond
to eight ‘disturbing factors’, namely, gravity, wind and the six ‘tolerances’ associated with
the directions of the principal longitudinal axis of inertia, the charge centre of gravity, the
rotational torque axis, the thrust application point, the centre of the exit plane and the
thrust. Further, H is linear in w,, and G(s) is independent of the eight quantities.

It follows that the values of Z, & and d{/dt obtained from (4-3-8,9) may each be expressed
as a complementary function which is a linear function of the three initial values Z,,
and {,; plus a particular integral which is a linear combination of eight parts, each part
corresponding to a single disturbing factor. For example, the angular deviation may be
written in the form )

Z = 3"1 Zo+g230+g3c01+zg+ Zw"l‘ Zc+ZG+ ZL+ ZM+ZN+ ZR

in an obvious notation. Here, for example, Z, is the angular deviation due to gravity of a
symmetrical rocket when the projectile is perfectly launched and there is no wind.

The three initial values Z,, B, and {,, will also, in general, be linear functions of the eight
disturbing factors, to a similar order of approximation. Thus the total angular deviation Z
(and similarly for the yaw and cross spin) may be regarded as a linear sum of eight parts,
each of which is due to a single disturbing factor and is made up of four contributions due
to (i) an initial deviation, (ii) an initial yaw, (iii) an initial rate of turn, all associated with
the disturbing factor in question, and (iv) the action of the disturbing factor after launch
when the projectile is perfectly launched.

t Strictly, f and therefore V depends upon g to the first order, by (4-2:1) and (4:3-1); however, in equa-
tions (4-3-8, 9), with which we are concerned, we may put f = f, which is independent of g, since the error
involved is of the second order and can be neglected.
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Since the values of Z;, 5 and {;; depend to a considerable extent upon the design of the
projectile and of the projector, the general procedure adopted will be to give eleven solutions
for each of Z, 5 and d{/dt corresponding to eleven cases:

(1) Arbitrary initial deviation Z,; &, = {,; = 0, no disturbing factors.

2) Arbitrary initial yaw E; Z, = {,; = 0, no disturbing factors.
3) Arbitrary initial rate of turn {,,; Z, = &, = 0, no disturbing factors.
4) Gravity; perfect launch and no other disturbing factors.

(5) Wind; perfect launch and no other disturbing factors. ,

(6) to (11) The six tolerances separately; perfect launch and no other disturbing factors.

The total angular deviation (and similarly for the yaw and rate of turn) due to one or to
all of the disturbing factors may then be found from the eleven sets of solutions when the
initial values are known, e.g. from experimental determinations or by calculation from the
motion on the projector.t

The solution of the first case is, of course, trivial and will be omitted in future; it is

=12y, E=0, dfdt=0. (44-12)

It has been taken for granted that the forms of the various subsidiary functions such as

P(s), Als), A, « T(s), Ty(s),
etc., occurring in the equations are known at each instant during burning. The quantities
upon which these functions depend may be divided into four main groups under the headings:
(i) design of projectile (weights, dimensions), (ii) charge, combustion chamber and nozzle
characteristics, (iii) aerodynamic force and couple coefficients, and wind structure, and

(iv) magnitude and variation of the tolerances. For any particular weapon most will usually

be known about the first group and least about the last. Methods of estimating some of
these quantities are discussed in § 9.

7

(
(
(

5. GENERAL SOLUTION OF THE EQUATIONS FOR A SPIN
PROPORTIONAL TO THE VELOCITY

5-1. GENERAL

We assume throughout this section that the Assumptions A and B 1 to 3 hold (see §§ 3-61,
3:62), and that the axial spin 7 is related to the velocity in the following way:

r=7yV. (5-1-1)
Here y is a constant which may be positive, negative or zero. For positive y this corresponds
to a clockwise rotation about the axis when viewed from the rear. The relation (5°1-1) holds

to a good degree of accuracy for rockets which arespun by passing the burning gases through
inclined nozzles. See, for example, § 9-4. We have, by (4-2-17, 18, 19) and (5-1-1)

V2G(s) — (ng+ﬂg72_z‘ywl)V2+{2m1+%+iy(2kﬂl+%)}v+/<{7—/<2~g§ . (51-2)
By Assumptions B1, 2 and 3, we may write
G(s) = p? (5:1-3)

T Formulae for Z,, &, and {,, for two types of projector are given in the monograph mentioned in § 1-2,
See also § 9-1.
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in (4-3-8), where P =+ iyt —iym,, (51-4)
and is constant. Put b= p,—1ps, (5-15)
where £ = ML+ B277) 2+ o2+ 1+ 2%, (51-6)
and 1 = LA+ B+ oyl — g — iy, (5:17)
From (3-3-9) and (4-2:15, 16) we have?

7= Yls—s0) + 00 (518)

2 s
P(s) = xar+ [ (w—ifa) s, (51:9)

to So
and Als) = — 5 o, -+if,y. (5-1:10)

In order to solve the equations it is not necessary to assume more than Assumptions A
and B 1 to 3, and we shall not make any further assumptions at this stage. If, however,
Assumption B4 is made, then the following quantities, which occur frequently in the
expressions obtained, may be written as

Alw) —A() — ﬂk(%‘ _%) (5-1-11)
and P2+ Au) A(v) = n? —iyw. (51-12)

5:2. GENERAL SOLUTION

: o A, cos
Write R(s) = eP<s>{wl (5) + i (5) — 5 (/1 - IJ;) - T(s)} , (5-21)
and Ty(s) = —T1(s) +P'(s) Ty(s). | (5-2-2)

Then, since A= V{P'(s) —A(s)},
we may put R(s) = —R,(s) +Ry(s), (5-2-3)
where R(s) = er{A(s)(w; () 457 0‘) - Tg(s)}, (5-2-4)
and Ry(s) = eP<s>{w; () —£5P% - 2(s)}. (52:5)
Also, by (#221,22),  Ty(s) = el (1 A) s (5. (5:2:6)

The general solution of equation (4-3-8) is
H(s) = K, cos p(s—so) + Kysin p(s—s,) f]—%fSR(u) sin p(s—u) du, (5-2-7)
where K, and K, are constants depending upon the initial conditions. By (4-4-8,9) we have
K, = Vo Ey+w,(s0), (5-2-8)
- 1 ; /

and K, = 11; [gm —AoVo By — Aoy (so) *"Vz{g cos a+fofy (o) €70 —w) (so) Vo}:l . (5-29)

+ I (5-1-1) holds in the intersal (0, fy) then & = ys, of course.
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We may, by (5-2:3), write
H(s) = K, cos p(s—s,) + K, sinp(&—so) +1 :{pRz(u) cos p(s—u) — R, (u) sin p(s—u)} du,
' (5-2-10)
where K; =K, “;‘Rz(%) = ;‘ [Co1 — Ao Vo By —Agw, (so) — p3(s,) €7°]- (5-2:11)
It follows that

H'(s) = pKzcos p(s—so) —pK, sin p(s—sp) + Ry(s) -
mf:{pRz(u) sinp(s—u) +R,(u) cosp(s—u)}du. (52:12)
Hence A(s) H(s) +H'(s) = (A(s) K, +pK;) cos p(s—s,) + (A(s) K3—pK,) sinp(s—s,)

FRy(s) =5 [ (PRof) + A5 By (1)} sin pls —u) da

- f :{Rl(u) — A(s) Ry(u)} cos p(s —u) du, (5-2-13)
and
&0 (R (1) +-A(s) Ry ()} = [} (0) —EGFEHP+ A ) AW} =2 To() —Al) Ti(w),
’ L (5-2-14)

e R, (u) — Als) Ry(w)} = ()~ T2 {Aw) — A©)} — Ty() +AL) To(w). (5215)

'The yaw may be obtained from (5-2-10), since
- 1
B=yp {H(s) e P —w,(s)}.

Also d{/dt is given by (4-4-7) and (5-2-13). The angular deviation Z is then obtained as a

result of a single integration from (4-3-9). ‘
In the succeeding sections we use the formulae just obtained to derive separate explicit

solutions for Z, = and d{/dt in the ten cases (2) to (11) mentioned at the end of § 4-4.

‘ 5:3. INITIAL YAW
We take H=F, dfjdt=0, Z=0 _
at launch, and assume no disturbing factors. Then, by (5-2-1, 8,9), R(s) = 0 and
A

. o . 0 -
K, =TE, K,= —‘p_%”-"-'w

Hence, by (5:2:7), H(s) = V[,Eo{cosp(s—so)—‘%ﬂsinp(s~so)}, (5-3-1)
and therefore H'(s) = —pl, B, {sinp(s—~so) —{—%Q cosp(s—so)}. (5-3-2)

It follows from these two equations, and from (4-4-6,7) and (4-3-9), that
"= EO;:?C“P(‘):cosp(s—so) —‘%Qsinp(s——so)}, (5-3-3)
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e = B, The ™[ {ALs) — Alsy)}cospls 50) =5 0 +A(0) Alsgsinp(s—sy) |, (534
and " A,
—P(s
2= By = {eos pls—so) = sinpls—so)| = [ (4 Aw) Ay)} e P9sin plu—se)

+[ ;e“”‘“) (A () —A(sy)} cos plu—sy) %] . (53-5)

54, INITIAL RATE OF TURN
We take E=2=0, dijdt={,
at launch, and assume no disturbing factors. Then, by (5-2:1, 8,9), R(s) = 0, and

1
'Kl :O, K2:;§01.

= ;Qnsinp(s—so), (5-4-1)

and therefore H'(s) = {,, cos p(s—s,). (5°4-2)
It follows from these two equations, and from (4-4-6,7) and (4-3-9), that

Hence, by (5:2-7), H(s)

—P(s)
Qn 7 Sinp(s—so), (5:4-3)

[I]

% = (o 77 ‘Cosp(s——so) + %E‘Q sinp(s—so)} ) (54+4)
A(w)

e—P(S)

and Z=C01|: A sinp(s—s, +J ‘P(“){cosp(u s0)+—p—51np( —so)}gu]. (5°4-5)

5:5. GRAVITY

We consider here the case (4) mentioned at the end of § 4-4, i.e. we determine the effect
of gravity upon the motion assuming perfect launch and that no other disturbing forces act.
The effect of gravity tip-off (see §3-7) may be determined from (4-4-12), §§5-3 and 54
when the appropriate initial conditions are known. We have, from (5-2-4, 5, 8, 11),

RI(S) = ——A(S) eP(s)%?jﬁc, RZ(S) — __Cp(s)g CI(;S GC’

Hence, by (5-2-10, 12,13),

— ’ P BRRELC) R 5
H(s) = —gcos afsoe”( ){cos p(s—u) 5 sinp(s u)}V; ) (5+5-1)
(s) — " o[ erolsin p(s — u) + 2 )\ 5
H'(s) = —-gcosoc[ [)Jsoe”( ){smp(s u) + 5 cos (s u)}n], (5-5-2)
, ef® 1 . du
and  A(s) H(s) + H'(s) = —geosa| 5 — f {1+ () A(s)} sin p(s—2) 3

[ hw-Awyerncospls—n) 7], (553
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It follows from these three equations, and from (4-4-6,7) and (4-3-9), that

o = —gC—I(/)Sae“P(S)f;eP(“){cosp(s—u) _./_\%u_) sinp(s—u)}#, (5-5-4)
Zg—gcoscxe“"“)[ f {p*+A(u) A(s)} eP@sin p(s —u —|—f {A(u) —A(s)} eP@cos p(s—u V:I
(5'5°5)
and Z = gcos a[e;m f :oePw){cos pls—u)— é%u—)sin [J(s—u)}%

—P(u)
LS A A ersinplu—o)
s a—P(u)
[ duf* (A )~ A} e cos plu—) I‘f}’] (55+6)
When the rocket is ‘infinitely stable’ (i.e. n2 = p2 = o0) so that the axis is always tangent
to the trajectory, equations (5-5-4, 5, 6) reduce to

df _gcosa
&tV

[1]

=0 Z =gcosa d— (5:5°7)

2

On the other hand, if the rocket is not infinitely stable, the deviation may be quite different
from that given in (5-5:7). For example, when the rocket is neutrally stable and unrotated
(n2 =0, y =0), and when « and all the aerodynamic lateral forces and couples can be
neglected, we obtain

g C;S“ (t—ty), dejdt=o0. (558)

E,::Z:

5:6. WIND

It was shown in § 3-52 that the effect of the wind component along the direction of pro-
jection OZ may be neglected during the burning period of the rocket. Accordingly, we
need only consider the cross wind perpendicular to this direction. If w; and w; are the
components of the wind speed from left to right across the line of fire, and along the line of
fire, then w; = wsin§ e#! = wysina—iw; (5-6-1)
when the wind speed has no vertical component.

We consider here the case (5) mentioned at the end of §4-4, i.e. perfect launch and no
other disturbing factors are assumed. Hence, by (5:2+4,5,8,11),

Ry(s) = wi(s) POA(s),  Ryfs) — wi(s) €#), (56:2)
, ) ,
K, = w,(sp), Ky = —])A(So) wy($o)- (5:6:3)
It follows, from (5.2.10,12,13), that

é%—0—)sinp(s—-_so)}

HL(s) =y (s0){cos pls—so) -
‘+fsw’1(u) eP(“){cosp(s— u) -—A—;;—Q sin p(s— u)} du,  (5°6-4)

Vor. 241. A, . 62
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H(5) = —pu so)sin pls—sp) + 250 cos plssq)| g 5) e

wpf u) eP® {smp( )+A%u) cosp(s——u)}du, (5:6-5)

and
A H)+ () = w50 {A6) — A} cospls—s0)— 192 Als) Aly)singls—y) |

+f wy(u) e?®{A(s) ~—A(u)}cosp(s—u) du+wi(s) eP®

— f u) eP@ {p2 4 A(u) A(s)}sinp(s—u) du. (5:6-6)
Accordingly, by (4-4-6,7) and (4:3-9), |

= wlr(/‘f 0) —P(s){cosp( )__{X_ggzsinp(s_so)}_wl(s) ,

e~ P

TR 7 wl e”("){cosp( )ﬂ%@sinp(s——u)}du, (5:6-7)
2 = o) &P L)~ Alsy)}cospls—s) — {42 A) Alsgsimps—so) |
+e” P(S)f 1(w) eP®{A(s) — A(u)} cos p(s—u) du

So

—%e*”@fh ‘() €2 {2 A(s) A(u)}sin p(s—u) du, (5:68)

and Z= wl_V(:v) —1—0‘—1(;9—) e“”(”{cosp(s—so) - ‘/—X—E;—O) sinp(swso):

+w, Sof P‘“)[:{A A(sq)}cos plu—sg) ——{p2+A A(so)}sinp(u—s, ]du

~P(s)

aa w'l(u) e”(.“){cos])(s—u) — 1%[(72 sinp(s—~u)} du

+ f —p(u)l‘fi‘ (1) €O LA (W) A(0)}cos plu—) o
“},L ‘”")%L " (v) €2 {2+ A(u) A(v)}sin p(u—0v) do. | (56:9)

In these formulae the derivative of w, with respect to the arc length occurs in several
places under the sign of integration. It is possible, of course, to avoid this by integrating
by parts, but the formulae are in many ways more convenient as they stand, since for a
constant wind speed wi(s) = 0, and if the wind varies logarithmically with the height
(see § 6+8) the first derivative is more convenient to manipulate.

5-7. TOLERANCES
In this section we consider the effect of the six tolerance angles
Ugs Oy  Opy Oar Xy Op
upon the motion of the rocket during the burning period when there are no other disturbing
factors and when the projectile is perfectly launched. This corresponds to cases (6) to (11)



OF THE MOTION OF ROTATED AND UNROTATED ROCKETS 507

of §4-4. We consider the combined effect of all six tolerances. The contribution due to any

particular tolerance can easily be picked out from the formulae (see, for example, §§ 6:102

t0 6:107). The twelve angles ap, ¢, (P = C, G, L, M, N, R) will, in general, vary during burning.
We have, by (5-2:4, 5,8,11),

Ry(s) = =" Tyls), Ry(s) = —em® Tys), (571)
1 .
K, =o, K, = —;,us(so) eioo, (5:7-2)

Hence, by (5-2-10,12,13),

H(s) = — (o) €sinpls—sy) — [ 0 pTy() ospls—u) = Tifu) sinpls— )}, (57-)

j4
H'(5) = — py(s,) €70 cos p(s—s55) — P Ty(s f e {pTy(u)sinp(s—u) + T5(u) cos p(s—u) }du,
(57-4)
and  A(s) H(s) - H'(s) = —p(s,) ewo{cos H(s—s,) +1%sin p(s_so)} P T(s)
5 e T )+ A) T simpls—)
+ f ;eP<“){T3(u) —A(s) Ty(w)} cos p(s —u) du. (57-5)

Let u(s) be an arbitrary integrable function of s. We define nine functions of x(s), and
therefore of s, in the following way:

—P(s)

(5,) = (1) = = | () €00 {p cos pls—u) — Alw) sin p(s — )} (57-6)
salsy ) = 5ali) = S [ ) r0rsing(s—u) o, (577)
e~ Fe) o,
6, 1) = w5(0) = =5 plsy) €vsimpls o)
5 [ ) 00 os pls ) Py simpls )}, (579
e P s o
1) = S5 [ w) (PP AG) AL} e insin pls—u) 7,

+ e-P(S)fs,u(u) {A(u) — A(s)} eP@Hio@ cos p(s—u) dV,,  (57-9)

—P(s) s .
9a1) = 5= [ ) A) €00 sipls—u) dV, 40 u(u) R+ cos pls—u) dF,
; ’ (5-7-10)

Ys(p) = —pls,) €7°7F “){cos p(s—so)+ 1}%

e—-P(s) s

2 uwerorie (g2 AGs) P (w)}sings—a) du

— e"’P(s)fs,u(u) eP@riow) {P' (u) — A(s)} cos p(s —u) du. (57-11)

sinp(s— so)} +p(s) €76

62-2



508 R. A. RANKIN ON THE MATHEMATICAL THEORY

We define, for v = 1,2 and 3,

z,(5,0) = 2,(p) = +f Yy (us % (5:7-12)

Hence  z,(u) = 5 [ wlu) €047 {p cos pls—u)—Afu)sin pls—)}
5[ e oG o) (4 Al Ao} e i0sin plu—o)

—I—f e“P(“)Vf w(0) {A(v) — A(u)} e?®@+0® cos p(u—v) dV, (5:7-13)

e—P(s) s

pV u(u) ePetic@sin p(s—u) dV,
1 . du i) e
+p P(u)V f ,u(v) A(u> eP)+io@) mnl)(u—y) dVL

+fse"’(“>%fu,u(v) ePOrioW) cos p(u—v) dV,, (5:7-14)

0

Zy() = —

' C_P(s) . . s du
and  zy(0) = uls) éoosinpls—so) + [ () e
e PG) ps

4 u(u)eP@riewf pcos p(s—u) — P'(u) sinp(s—u) } du

— p(so) e”"of;e“’@{cos])(u —58) ‘/—X—;)l) sin p(u— so)} #

5| e ) e (g2 ) P(0)}sinplu—o) do

uv So

—fse’l’<“)§ufuﬂ(v) eP@*ie@ {P"(v) — A(u)} cos p(u—v) dv. (5-7-15)

It follows from these definitions, and from (5:7-3, 4, 5), that

[x]
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These formulae and the definitions of 4, #, and u; can be used to obtain expressions for
E, d¢/dt and Z for each of the six tolerances separately, perfect launch being assumed.

6. SIMPLIFIED SOLUTIONS FOR A SPIN PROPORTIONAL TO THE VELOCITY

6:1. ASSUMPTIONS

In this section the solutions obtained in § 5 are simplified and brought into forms suitable
for quick numerical calculation. In order to do this it is necessary to make a number of
additional assumptions, namely, Assumptions C 1, 2 of § 3-63. Assumption C 3 is only used
in §§6-9, 610,
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The Assumptions B and C may be grouped into two main categories:

(a) Quantities assumed to be constant

(i) Parameters connected with the change of mass and rate of consumption of the
propellant, and with the aerodynamic forces, namely f, £, n2.

(ii) Other parameters connected with various asymmetries in designs and functioning
(see Assumption G 3).

(b) Quantities assumed to be negligible

(i) Parameters contributing to the damping, namely «, ;, «,.

(ii) Other parameters.

Of'these, (a) (i) and () (i) are the most important. For (a) (ii) see § 3-63 and §§ 6+9, 6-10;
(b) (ii) requires no comment except as regards those parameters which depend upon the
Magnus forces. It is believed that the other parameters included are small in all practical
cases and that they can be neglected in comparison with other larger quantities.

We now consider the legitimacy of the assumptions regarding the groups (a) (i), (4) (i)
and the Magnus forces.

The acceleration. The form of the acceleration depends upon the rate of burning of the
charge, since this determines both the magnitude of the thrust and the mass of the rocket
at any instant. When the charge design is such that the rate of burning is approximately
uniform between launch and burnt, the assumption of constant f (= @W/m) is justified,t
provided, of course, that the ratio m,/mgy, is not too small. In many cases, however, and
particularly when the temperature of the charge is high, the acceleration will decrease
more or less irregularly between launch and burnt.

The aerodynamic coefficient n®. This parameter determines the wave-length of the oscillations
in yaw. The chief factors causing variations in 72 during burning are (i) the decrease in mass
due to the burning of the charge, and (ii) the velocity of the air relative to the projectile,
and of these the latter is the more important.

The decrease in mass affects the position of the centre of gravity and therefore 4,. It also
causes the transverse moment of inertia 4 to decrease. Usually, when the charge is situated
in the rear portion of the projectile, the centre of gravity will move forward in the rocket
during burning, so that d; will increase. The charges in 72 due to (i) are, however, unlikely
to be appreciable unless the stability is critical (#? = 0) and the charge-mass ratio is very high.

‘The main cause of variation in 72 is the varying velocity of the projectile during burning.
This affects the Mach number so that the magnitude of the moment coefficient k4, may
change appreciably as the velocity passes through that of sound (see § 3-518). For subsonic
values kd; may be expected to remain approximately constant (apart from the effect of (i)).
As the velocity passes through that of sound kd; usually decreases} sharply to a minimum
after which it may increase slowly for increasing Mach number greater than unity.

The ratio f. Thisis affected only by the change in mass and location of the centre of gravity.
For some designs it may increase during burning, and for others it may decrease, but the
amount by which it changes is usually very small unless the charge-mass ratio is very high.

T In this case the form of the thrust-time curve is approximately trapezoidal, the sides of the trapezium
being steep.

1 I.e. the destabilizing moment increases.
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From the above remarks on f, % and f it is clear that the magnitudes of the variations
possible during burning cannot be stated definitely in any detail since they depend to a
considerable extent upon the design and performance of the particular rocket under con-
sideration. For some designs the variations may be small, while for others they may be
appreciable. In the latter case the justification for the assumption of no variation rests on
the fact that it is in the initial stages of flight, while the velocity is subsonic, that the variation
is least, and it is during this period that the greater part of the deviation of the rocket is,
in general, built up, the motion during the later stages of burning consisting mainly of
oscillations of decreasing amplitude about a fixed angular deviation. Accordingly, the values
of f, n?and f at launch may be taken as the constant values. This argument does not, of course,
apply when the launching velocity is in the region of the velocity of sound, or when the
variations mentioned are large. In such cases the solutions obtained under the assumptions
cannot be expected to be valid approximations, particularly if the stability is critical, and
it may be necessary to split up the trajectory into a number of arcs in each of which the
assumptions hold.

Neglect of damping terms. Damping of the oscillations is due to two causes: (i) the effect
of the burning gases ejected from the projectile, and (ii) the effect of certain of the aero-
dynamic forces and couples. The increase in velocity causes most of the decrease in the
amplitude of the yaw during burning, but it is convenient not to consider this as a damping
since the relevant quantity in the equations is VE rather than E. The cause (i) contributes
the parameter « and (ii) contributes @, and «,. The three quantities are usually of roughly
the same order of magnitude. Their neglect amounts to putting

RP(s) = RA(s) = 0,
where R denotes real part. '

The effect of damping is greatest upon the yaw, and it is not really justifiable to neglect
it except when the time of burning is short. For long times of burning where several oscilla-
tions in yaw occur there may be an appreciable decrease in amplitude—apart from that
due to the increasing velocity—between the initial and final oscillations, which is attributable
to damping.

From a small number of calculations carried out with and without damping, it is thought
that the effect of damping upon the angular deviation is not very appreciable, but this
conclusion cannot be stated firmly without further confirmation. The main justification
for the neglect of the effect of damping upon the angular deviation is the fact, mentioned
before, that it is in the early stages of flight while the magnitude of the damping terms is not
appreciable that the greater part of the angular deviation is built up. ’

Neglect of Magnus forces. The neglect of the quantities f—f,, f—f, and @ means that the
effect of the Magnus force Ly and Magnus couples M and M, can be ignored.f Of these
the couple M, is probably the most appreciable. Measurements of the associated parameter
@ have been made for certain shells by means of jump-card trials, but no direct measurements
have been made for any rocket so far as the author is aware. However, it has been possible
to deduce the approximate order of magnitude of @ for certain rockets from their behaviour

+ The Magnus force L, has already been neglected as a result of Assumption A 13.
+ The parameter @ is connected with Fowler’s coefficient y in the following way:

v = —Va/2p.
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with different sizes of fins and at different spins. From the meagre data available from these
and other sources it is concluded that the effect of the Magnus forces and couples is small
except when the projectile is very long in relation to its calibre, and when the external surface
is such as to increase the aerodynamic circulation about the axis at the extremities, e.g. if
the projectile has fins at the rear end and is spinning very rapidly. In both these cases the
moment arm d, is large and therefore @ may not be negligible.

6-2. GENERAL
We assume that the spin is proportional to the velocity, as in § 5. Then
r=1yV, (6-2-1)
where y is a constant. This includes the case of no spin. It follows from (5-1-3, 4) and Assump-
tions G 1 and 2 that Gls) = p? = 2+ 22 — — 12+ 2. (6:2:2)

Clearly G(s) and p? are negative if f?y2<<v? and, accordingly, the solutions of equation
(4-3-8) will be unstable in this case, i.e. the yaw will build up like e'#! along the trajectory
so that Assumption A 1 may no longer hold. For this reason we restrict ourselves to values

of y for which B> 12, (6-2-3)

This is, obviously, only a restriction if the aerodynamic lift moment M, is destabilizing,
i.e. if n2<0. Further, we shall only consider values of y corresponding to clockwise rotation

as viewed from the rear, i.e. we take y=0. : (62-4)

This does not involve any loss of generality, since a reversal of the sign of ¥ corresponds merely
to a reversal of that component of deviation, yaw, etc., which is perpendicular to the plane
in which the disturbing factor under consideration (see end of § 4-4) acts at launch.

By virtue of (6-2-3, 4) it follows that the allowable ranges of y are

y=0 for n?>0,
v (6-25)

p

In the second case the stability factor is defined to be
2
)=
v

The two ranges can be expressed conveniently in terms of p which we may take to denote
the positive root of p%, namely,

y>- for n?<0.

sfabilizing lift moment M, : p>h, } (6-2+6)

destabilizing lift moment M,: 0<p<py.

It will be noted that we include the case of neutral stability (n? = 0) under a destabilizing
moment.

The formulae we obtain are of two kinds, accurate and approximate formulae. The
former may be applied for every y within the ranges (6:2-5), but the latter are only valid for
values of y which are not too small.
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In all cases separate formulae are given for the case of no spiny = 0. In this case the motion
in each of the eleven cases mentioned in § 4-4 is two-dimensional by virtue of the Assumptions
A, B and C, and we may regard the plane ZOJX in figure 3 as the plane in which the dis-
turbing factor acts at launch, instead of the vertical plane, and write

=0, (=0, E=i=0-0.
The relation between the various directions is illustrated in figure 4 for this case. Also, by

(6-2-5), we must have 72> 0 in this case, although the formulae can easily be extended to
include the case n = 0.

v
(vertical)

line of fire
(horizontal)

FIicURE 4. Two-dimensional motion.

0(cG)

OZ = Direction of projection. Angle Z = 0 (Angular deviation).
OT = Tangent to trajectory. Angle ¢ = 0 (Deviation of Axis).
0C, = Axis. Angle E =y (Yaw).

6-3. NoTATION
We have, by (5-1-9,10) and the assumptions,

P(s) = —ify(s—so), (63-1)

and A(s) = ify. (6-3-2)

Write | A, = ﬁ+§, A — ﬁ-éy’, (633)
- 7 - (7 .3

comJe o 1) oss

Wi, = Gj 1A , ‘ (6:3-5)

Gy = G, | 1—A]. (6-3-6)
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Here Jj, and V are the velocities at launch, and at any instant between launch and burnt,
respectively.T The suffixes j and £ here and later take the values

Jj=0,1; k=12
We also write] ¢, = 31G2, ¢ = B — Py, (6:3-7)
v Vie = 305, Vi = Y1ue—Vore (6-3-8)
The quantity A, is positive or negative according as the lift moment is destabilizing or
stabilizing (see (6-2:6)). The quantity A, is always positive.
In the case of unrotated motion when y = 0, the quantities A, and A, are not required,
‘the values 1,7 and A,y being replaced by » and —n respectively. In this case we have

G, = G, = 0, and we write
wmJlate ne (2 oo

so that Wy = Wy = Vg, Wy = Wy = Uy, (6-3-10)
and =0, ¥ =7y,=13m(v]—0}). (6:3-11)

The quantities G;, Gj; arise only in § 6-10.
Owing to Assumption C 1, we have§
s—s8y=(V2=V7%), (6-3-12)

so that y(s—so) = $n(GF—GE) = ¢,
(By+p) (s—s0) = gm(w}, —w§y) = ¥y,
(By—p) (s—50) =£3m(wiy—why) =%V,
the positive sign being taken when 0 <p<fy and the negative when p> fy. Also

n(s—so) = 7 (v} —0)
and we have P2 Aw) Av) = p2— %2 = n?
A(u) —A(v) =0,
P+ AMu) P'(0) = pP+5%?
P'(v) —A(u) = —2ify.

6:4. FRESNEL FUNCTIONS

Write, for any non-negative real # and v,
&(u,0) — CKu,v)—kiS(u,v)::‘[Ue%”uzdx, (6:4-1)

and &) = £(0,u) = Clu) +iS(u). (6:4-2)

t The formulae obtained will usually be applied at burnt. For this reason, and for convenience in the
notation, the suffix 1 is affixed to G in (6-3-4). It should be noted, however, that the formulae hold at all
instants during burning for which the assumptions regarding the magnitude of y are valid.

1 The quantity ¢ has no connexion with the ¢ defined in § 3-214.

§ It should be noted that it is not assumed that f is constant before launch.

VoLr. 241. A. 63
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Here C(u,v) = C(v) —C(u), S(u,v) = S)—S(u), (6+4-3)
where C(u) and S(z) are the ordinary Fresnel integrals.}
Owing to the highly oscillatory nature of the functions C(«) and S(x), it is more convenient

in numerical work to employ the steadlly decreasing functions 4(«) and B(x) which are
defined as follows:

D(u) = B(u) +id(u) = e %muz{l RIS >} — e gy, o0). (6:44)
It can be shown, by the methods of contour integration, that

1 [ x~Edx xtdx
_—— Yru2e " 77 e~ dmux 77 A
A(u) 7T~/2J~0 < 1 xZ’ B «/2f h 1—|—x2 (645)

These expressions display the monotonic properties of the two functions. Tables of A(u),
B(u) and of the functions 4, («), Z(«) and Z, («) are given in Appendix A. The other functions
are defined as follows:

Ay(0) = L~ au), (6:4-6)
and Z(w) = Z,(u) +logu — 7 f :A(x) dx. (6-4+7)
Here log u denotes the natural logarithm. The following formulae are occasionally of use:

A (u) = —muB(u), B'(u) =mud(u)—1, (6-4-8)

and f :B(x) dr = 1 — H{A2(u) + B2(u)). (6-4-9)
In the remainder of this sectipn the following five functions occur frequently:

E(u,v) = cos $mu® S(u,v) —sin $mu® C(u,v) —%} {1 —cos {n(v2—u?)}, (6+4-10)

E*(1,) = E(u,0) +-, | (6-4:11)

G(u,v) = cos ¥mu? C(u,v) +sin dmu? S(u, v) — ;715 sin 4m(v2—u?), (6-4-12)

F(u,v) = 3m{C?(u,v) +S%(u,v) }+% {cos $mv2 S(u, v) —sin $mv? C(u,v)}, (6-4-13)

and  H(u,v) = wf du f sin 7 (u2 —uj) du,+ % {cos 3mv? C(u,v) +sin dm?S(u,v)}. (6-4-14)

In terms of A(u), B(u), etc., these may be written as ,

E(u,v) = A(u) + 4,(u) cos im(v2—u?) — B(v) sin 4m(v? —u?) —%}, (6-4-15)

E*(u, ) A(u) + A4, (u) cos tm(v2—u?) — B(v) sin 3m(v2 —u?), (6-4-16)

G(u,v) = B(u) — A, (u) sin 37 (v2—u?) — B(v) cos 3m(v? —u?), (6:4-17)

Flu,v) = $n{42(u) + B2(u) 1 40) + B2(0)}— - A0)
—7b(u,v) cos ym(v? —u?) —ma(u,v) sin ym(v2—u?), (6-4-18)

H(u,v).= Z(v) —Z(u) ~—-—;—B(v) +ma(u,v) cos 3m(v:—u?) —wbh(u,v) cos 3m(v2—u?), (6-4-19)

t There are two definitions of the integrals C' and S in use. Only the functions defined by (6-4-1, 2) are,
however, used here,
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where a(u,v) = A(u) B(v) +B(u) 4,(v) (6-4-20)
and b(u,v) = B(u) B(v) —A(u) 4,(v). ‘ (6-4-21)
Write E, = e Wk & (wyy, W) + ;Zw
= D(wy) — ei'/fk{D(wlk) - 771‘2’—1;:}
‘ = G(woy, Wyy,) +1E* (wor, wy), (6-4-22)
and put P(u,v) = —; {A(u) sin (02 —u?) + B(u) cos §m(v2—u?) — B(v)}, (6-4-23)
Q(u,v) = %{—A(u) cos $m(v2 —u?) + B(u) sin {7 (v2 —u?) +A(v>}, | (6-4-24)
so that P(u,0) +iQ(u,0) = | {D(u) ebmic*-0 —D(n)},

where the bars denote the conjugate complex values.
In the case of three-dimensional motion the expressions which we derive will be of the form

Z=70—7O, ~ (6-4-25)

B=EO_HO, | (6-4-26)

e dew g

- M M 4.9

dt dt dt’ (6-4-27)
where the two different parts of each expression correspond to the two different modes of
precession of wave-lengths on o

| b ™ B

Thus for any given &, Z®, E® and d{®/dt are functions of A, Wo, Wy Goy G, Gy and Gy,
alone. '

Since A, changes sign according as the lift moment is destabilizing or stabilizing, the
expressions for Z®, E® and d{®/dt will not be the same in the two cases. We shall, however,
only give explicit expressions for the case of a destabilizing moment M,;, when 0<p<fy.
When the moment is stabilizing the changes necessary in Z®, E® and d{®/dt may be
found from the following table. A bar denotes a conjugate value.

destabilizing lift moment  stabilizing lift moment

(0<p<py) (0> py)
w2 — w2
j2 72
v j2 ~Yja
2 —¥2
Wi G(wygs Wyy) — w5 G(wyg, wy,)
Wi E(wyg, wyp) wE Skwoz: Wyg
Wi E* (wog, wy5) W E* (wog, wyy)
wszz —wjy By
F(wgg, wy,) —F(wyg, wy5)
H(wy, wy,) H(wim wyy)
w5 D (wyy) —w;, D (wgy)
wjo D (wyy) — w5 D(wy,)
w;p A (o) w;p A (o)
ijA(wlz) Wy A(wy,
w;o B(1w,,) —Wjo bWy
w;, B(w,,) —w;yB(wy,)

63-2
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All other parameters such as fy -+ p, fy —p, G;, and G; remain unaltered in the two cases.
As an example of the type of change which occurs, suppose that

70 = ;_12 (By +p) {1 +imwe, E},
when 0<p<fy. Then for p> fy we have

7® = % (By +p) {1 —imwyy Ly}

As stated at the end of § 6-3, the parameters G;, G;; only occur in the formulae given in
6:10. B finiti
§ y definition, G =G, (| 1-A]).
When £ = 2 y(1—=A) =y(1—pf)+p
which is always positive,T so that G, = G; /(1 —1,) (6-4-28)
in all cases. When £ = 1, however, we have
Y(A—=4) =y(1=F)—p,
and this is negative when, by (6-2-2),
VAL —2f) <n?.

This is impossible when the lift moment is destabilizing since f<1. If, however, the lift
moment is stabilizing, so that #2> 0, we shall have

Gp— G J(1-4) for y/(1—28)=n
G;, =G, J(4,—1) for yJ(1~2ﬂ)<n.}

The formulae we obtain in §6:10 will usually only be valid for y’s which are not small,
i.e. we shall require y>n so that the second case in (6:4-29) does not arise and we may put

Gy =G, J(1-1,) (6-4-30)

(6-4-29)

in all cases.
Neutral stability. When the stability is neutral

n? =—v2 =0,
so that p=py.
In this case Wig = Yo = Py = 0,
Gia =G,
G(wgy, wyy) = 0,  E(wgy, wy5) = 0, v
Fwgg, wyy) = 0,  H(wyy, wyy) =1 —7%, [ (6:4-31)

% _
Wy E* (W9, wy,) = 1, 7

|14

These relations simplify the formulae obtained in the case p<fy.

1 Since OC'is the longitudinal principal axis of inertia it follows that C< 4, i.e. £ <. Actually, of course,
B will usually be very small in comparison with 3.
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6:5. INITIAL YAwW
We take E=05, djd=0, Z=0

at launch, and assume no disturbing factors. Then, by (5-3-3 to 5-3-5) and the formulae of
§§ 6:3 and 6-4, —

Z=~;i‘9 (By—1) (1-+imog ) — (By-+5) (1-+ imogy )}, (651)
2=~ 20— v (pr+p) e, (6:52)
d = V. .

and d—f = -—zno%;{e“ﬁl—e””?}, | (6-5-3)

when 0<p<fy. The corresponding formulae for a stabilizing lift moment (p>fy) may be
written down from (6-5-1 to 6-5-3) with the help of the table in § 6-4.
For unrotated motion (y = 0) the above formulae become (see end of § 6-2 and figure 4)

7 = E{l —my E*(vy,0,)}, (6:5:4)

i Von o o

_— = =0 “VCOS §7T<Ul _‘vo), . (6'5'5)
and Z_tg = —E(,g@sin tn(v?—2v}). (65-6)

6:6. INITIAL RATE OF TURN

We take , E=Z=0, dfjdt={,
at launch, and assume no disturbing factors. Then, by (5°4-3 to 5-4+5) and the formulae of
§§6-3 and 6-4, ¢
L= ‘Q‘ﬁ/”(qul—wlez)a (6-6:1)
B — i S0 (it it (6:6-2)
2pV ’
d tiC Cm iy __ — i
an dt — 2p WPr0)eh = (fy—p) eV, (6:6-3)

when 0<p<fy. The corresponding formulae for a stabilizing lift moment (p>fy) may be
written down from (6:6-1 to 6-6-3) with the help of the table in § 6-4.
For unrotated motion (y = 0) the above formulae become (see end of § 6:2 and figure 4)

Z=t [ (;2}) G(vy, 1), (6-6-4)

—_ 1 .
B = Gy - psin (o —of), (6:6-5)

and d/dt = {;, cos m(v]—v3). (6-6-6)
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6:7. GRrAVITY

The deviation due to gravity alone may be written in the form

Z—=27,+Zr, (6-7-1)

where Z; is the deviation due to gravity tip-off, i.e. due to those parts of the initial deviation,
yaw and rate of turn which are attributable to the action of gravity, and Z, is the deviation
due to gravity acting after launch when perfect launch is assumed. The yaw E and rate of
turn d{/dt may each be split into two parts in the same way. The values of Z, Z,and d{,/dt
may be found from (4:4-12) and §§ 6-5, 6-6, when the initial conditions are known. In this
section we determine Z, I, and d{ /dt which result from perfect launch. We have, by

g
(554 to 5-5-6) and the formulae of §§ 6-3 and 6-4,

zZ,=% ;;}a [(By-+) {H (10, 1013) —iF (g 015)} — (By — ) {H(wyy, w1y) — iF (g, wyy)}],
| (6-7-2)
% g;;;‘ i [ﬁzyvll;p (Do) €2 = D(ws)} '37;/7 {D(wy) e —D'(wu)}], (67-3)
and
‘t%g - —iﬂgQ;OVS'a [(By+p) wio{D(wys) €¥2—D(wy5)} — (fy —p) wlll{zj(wm) et — D(wyy)}],
| (6:7-4)

when 0<p<fy. The corresponding formulae for a stabilizing lift moment (p>fy) may be
written down from (6:7-2 to 6-7-4) with the help of the table in § 6-4.
For unrotated motion (y = 0) these formulae become

B, =0,= gC;SOLH(vO, 1), (6:7-5)
By =0y = _gCOS“P(UG:UQ: (6-7-6)
v
. d df, mgcosa
and "détg = —dté =T 7 Q(vg, ). (6-7-7)

6:71. Method of using the formulae
Write Z=12,+2;= (X+iY)cosa, (6-711)

where Z, is known from (6-7-2,5) and Z; from the initial tip-off conditions and (4-4:12),
§§ 6-5, 6 6 The real part Xcosa is the gravity drop, i.e. the inclination of the trajectory to
the horizontal at any instant during burning is

a—Xcosa.

The trajectory also bends to the right by an amount — Y cosa in the plane of fire. This is
equivalent to an amount — Y to the right in the horizontal plane. For unrotated rockets
Y = 0. For rotated rockets with y>0, ¥, is usually negative or positive according as M,
is destabilizing or stabilizing, Y positive and Y = Y,+7Y, positive.
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The drift at the point of graze may be estimated as follows. Suppose that the rocket is,
at the instant of burnt, at a point ¢ in space. Let B (see figure 5) be the projection of @ upon
the horizontal plane through the projector P, and let G be the point of graze in this plane.
Let PF be the line of fire, and FB the projection of the tangent to the trajectory at ¢ on the
horizontal plane, F being the point of intersection of the two lines. Let H, K and L be points
on PF, FB and PF respectively such that the angles 2BHP, /GKB and £GLP are right

angles. Write HB=D, KG=D, LG=D,
PH:RI, BK:Rz, PL:R’
LLPG =pf, LLFB=u,.

The distances D,, D, and D are taken positive when the points B, G and G are to the right
of H, K and L respectively.

P(projector)

Ficure 5. Drift in the horizontal plane during and after burning.

After burnt the motion of the rocket is similar to that of a shell, and a trajectory starting
from @ with the initial velocity V], Q.E. «—Xcosa, and height H, = 1V?sina/f, may be
calculated by the usual methods.} If drift is not allowed for, the point of graze in the
horizontal plane is K, and the horizontal range will be R,. The drift KG may then be cal-

t For this part of the trajectory infinite stability (n = c0) may be assumed except for very large spins
when overstability and yawing at the vertex may occur and so reduce the range.
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culated from the trajectory data by means of Majevski’s formula (see, for example, the
Text-book of anti-aircraft gunnery (1925, p. 629) or Fowler ¢ al. (1920, p. 358)).
Thus we know the quantities R, and D, from this trajectory, a; = —Y from (6-71-1)

and (6-7-2), and R, =1V3cosalf.
It is not necessary to have a precise estimate of D,, the drift at burnt, since it is small in

comparison with the other quantities concerned, its magnitude being of the order of — R, Y.
The range to graze along the line of fire is then

R=R,+R,
to a sufficient degree of accuracy, and the linear drift to the right is
D =D, +D,+Rya,
= D,—RY+ (D,+R,Y)
=D,—RY,

approximately. The angular drift at the point of graze, as viewed from the projector, is

f= %— Y to the right,

and is therefore equal to the sum of the drift after burnt as viewed from the projector, and
the component of the angular deviation at burnt in the horizontal plane.

6-8. WinD

In §5-6 formulae were obtained for the angular deviation, yaw and rate of turn due to
the wind. In the derivation of these expressions it was assumed that the projectile was
perfectly launched. In actual fact part of the initial tip-off conditions will be due to the
action of the wind, but the contribution of these parts to the motion during burning is very
small and will be neglected. Accordingly, if w,(s) is the complex cross-wind (see (5-6-1)),
we have, by (5:6:7,8,9),

7z = —lﬁ[wl(s) —w,(so) €#76=50) {cosp(s—-so) —i%sinﬁ(&—-so)}]
~I—1/fsw;(u) eify(s—u) {cos[)(s——u) -—ii)—ysinp(s—u)} du
() Vl;fsemy(u—so)sinp(u—so) Iﬁf_ﬁ%‘gfss%f:wi(v) e/re=dsin plu—v) dv, (6:8:1)

= _IV[:wl () €prs=s0) {cos p(s—so) —1 %’ sin p(s— So)} —w,(s)

[1]

B S ify(s—u ___"é)l/' __] .8
+Lowl(u)e/37( ){cos/)(s u) zpsmp(s u)fdu], (6-8-2)

and

ac P rs—so g VR ) ey g d
i w, (so) Ze Y=s0sin p(s—s5,) +:5JAS wi(u) e sin p(s—u) du. (6-83)
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6:81. The wind structure

We now assume a particular form for the wind gradient, namely

w,(s) = w,(so) {1 —}—elog;}. (6-81-1)
0
This is similar to a form proposed by Suttont (1936), namely,
- , logyo /Ry Q1.
wy(s) = w,(so) {1 +W}a (6-81-2)

where £ is the height and the constant « is a function of the temperature lapse rate, of the
local topography, of #, and possibly of the wind speed w,(s,). If we take a constant accelera-
tion throughout burning (¥, = 0), then (6-81-1) and (6-81-2) agree with
2
~log,a’

since h =ssina = VZsina/2f,

(6-81-3)

approximately, provided that the rear of the projectile is not too far off the ground at the
time ¢ = 0. ,

From an extensive survey of gun sites in the London area it was found that (6:81:2) gave
a very good representation of the wind profile over a fairly wide range of heights.

The quantity ¢ in (6-81-1) is assumed to be constant. Itisa pure number and will normally
be real as in (6-81-3), but may be taken to be complex in order to cater for a wind varying
in direction as well as in velocity. For a constant wind ¢ = 0 of course. The relation between
w, and the cross and line winds is given by (5-6-1).

From (6-81-1) we have ) f
wi(s) = ew,(sy) 72 (6-81-4)

6-82. Notation
In order to evaluate the integrals (6-8-1, 2, 3) we introduce the following functions:

D*(u) = B¥(u) +id*(w) = [ D)%, (6:82:1)
e(u) *—"fwe"”%:—c = —Cix—isix = —Cix+i{dn—Six}, (6-82-2)
oy = e(3mug,) —e(3muiy). (6:82:3)

The functions 4*(z) and B*(x) may be calculated for small « from the formulae}

3 3.7 5,11
%N L LECE (L) QG (L2 T mu U Q0.
A (u) 87T 4{01 (?”u) Sl<2ﬂu )} 1. 3 +1 3.5. 72 1.3.5.7.9. 112+ (6 82 4)
D% Lo 16C% (L1702 S (12 i i
B (u) - ~~*8‘77——1{01 (fﬂu )+Sl (?”u )}—|_u 1.3. 52—|_1 3.5.7. 92 (6.82'5)

1 Sutton actually suggests the form

w;(s) = w;(so) logyo (%ﬁ + 1)/10810 (e+1)
which reduces to (6:81-2) when « is large. ’

1 For tables of Cix and Si x see the Table of sine, cosine and exponential integrals, published by the Work
Pro_]ects Administration (1940).

VoL. 241. A. 64
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For large u the following asymptotic expansions hold :

1 1.3 1.3.5.7

A*(u) = P B BN v 2 TR (6-82-6)
1 1.3.5 1.3.5.7.9
B*(u) = Y R o i 175 (6-82:7)

Tables of the functions 4* () and B*(u) at intervals of 0-1 from 0-1 to 5-0 are giVeh in
Appendix A.

6-83. Evaluation of the deviation, etc.
We have, from (681, 2, 3), (6:81-1,4) and (6821, 2, 3),

7 — 7070, (6-831)
where ZO = —/Z;Vz)wl(so) {1 —I—iﬂw“El+e:log%—|—iﬂwu{D*(w01) —D*(wy;)}
— Yimw,, e%ﬂiw%:zl{p(w“) —#H}:} (6-83-2)
and 7O — —ﬁg;j’ w, (s,) {1 —|—i7rw12E2+e:log II/Z iy D* (45) — D* (w,,)}
— iy el D(w,y) _FuZE}_ | (6s33)

_ - . V -
Also E= ﬁgp—l}b w, (o) {1 — et +e[log70—%e%el:|}

+ . |4 -
mﬁgpl}bwl(%) {1—el¢’2+e[log~l70—%el¢2el:|}, (6-83-4)

2

“. iy n(s0) {6 — e Jo(ee, — e} (6-83-5)
These formulae hold when 0<p</fy. The corresponding formulae for a stabilizing lift

moment (p>£y) may be written down from (6:831 to 6:83-5) with the help of the table in

§ 64 and the following transformations. When

and

2 2
wi, becomes —w?,
* (g D*
wyyD*(w;5) becomes —w, D*(w;,)
and ¢, becomes e,.

The components of the angular deviation in the vertical plane and in the plane of fire
may be found from the formulae for Z as follows. Write

2= (X+1Y)w,(sy)- -~ (6-83-6)
Then the angular deviation in the vertical plane is, by (5:6:1) and (6-83:6),
Xwgpsina+ Yw, downwards.

The lateral angular deviation is, similarly,

Xw;—Ywgsina to the right
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in the plane of fire. This is equivalent to a deviation

Xw;seca— Ywptana  to the right
in the horizontal plane.

6:84. Unrotated rocket
When there is no axial spin (¥ = 0) we obtain

Z= (s ("7 (Bl 22) + K (00, 1)), (6:841)

where K(vg, v;) = A*(vy) — A*(vy) —%log%

+3{Ci (§m08) — Ci (3m)}H{B(vy) sin §mf — 4, (v,) cos Imp}

—3{Si (3mv}) —Si (3m})}{B(v,) cos $mv}+ A4, (v,) sin $mv}}.  (6-84-2)

Also E=-— wl—I(/SOl I:l —cos 3m(vi—v3) +e¢ log% +3e{Ci ($mv}) — Ci (§m0?)} cos 3mv}
+ 36{Si ($m03) —Si (3m0})} sin %ﬂvf] , (6-84-3)
and d{/dt = —nw, (so)[sin 47 (v} —v3) — Le{Ci (3mvd) — Ci (3m0?)} sin dmv}
+3e{Si (3mvd) —Si (3mv}) } cos mvi]. (6-84-4)
In these formulae W, = wpsina—1iw,,

where w, and w; are the wind components along the line of fire and from left to right. It
follows that the angular deviation in the vertical plane due to a following wind wp is

—ug(so) sina [(°F) (E(vo, 1) +eK 01} - (6:845)
downwards. Similarly, the angular deviation in the plane of fire due to a wind w; from
left to right is o

—ug(so)  J(%F) €E v 1)+ eK (15, )} (6:84-6)

to the right.

6-85. Method of using the formulae

The expressions (6:83-1) and (6-84-1) for the angular deviation have been obtained under
the assumption that the wind speed varies logarithmically with the velocity—and therefore
with the height—according to the law (6-81-1). This includes the case of a wind which is
constant in speed and direction at each part of the trajectory during burning, for ¢ = 0.

In order to use the formulae it is necessary to know the wind speeds and directions at a
series of heights and to fit a curve of the form (6-81-1) to these data in order to determine
the appropriate parameters w,(s,) and e. For unrotated motion, however, it is possible to
do without extensive wind measurements and to avoid curve fitting by making use of the
concept of equivalent height. The angular deviation at burnt can then be determined from
a single measurement of the wind components at this height. The equivalent height depends
only upon the g.E. and the design of the particular rocket considered, and is independent
of wind speed and gradient. Itis defined in the following manner.

64-2
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Suppose that the angular deviation at burnt is

Zy = w,(s5y) Xy = wy(so) (X1, +eXy,), (6-85-1)

where X}, X}, are real constants which are given by
X, -/ (»’;if) O (?’)K(vo,vl). | (6-85-2)
Write V. = Voexp (Xp5/X1y), | (6-85-3)

and suppose that{ s = s, is the distance travelled, and % = 4, the height above the ground
at the instant before burnt when V' =V,; £, is the equivalent height, and it is clear that it
depends only upon the Q.E., the initial height of the projector, and upon the constants
X1, X}, If the acceleration is constant throughout the burning period and if the height of

the centre of gravity at the instant ¢ = 0 is /4, then

2
h, = hyy+s,sina = hoo—l—gj—isin a. (6-85-4)
It follows from (6:-85-1, 3) and (6-81-1) that
Zy = w(s,) Xy, (6:85-5)

The quantity X, is the wind constant for a constant wind (¢ = 0). The real and imaginary parts
of w,(s,), namely wg(s,) sina and —w,(s,), which give the wind components perpendicular
to the trajectory at the equivalent height %, are called the equivalent wind components. Thus
the angular deviation at burnt due to wind can be determined, when the wind constant X,
is known, from the wind-speed components at the equivalent height by the simple relation
(6-855). .

If the projectileisrotated (y > 0) this method is no longer possible. For if we proceed along
the same lines we find that there are two equivalent heights, corresponding to the two per-
pendicular planes through the trajectory, each of which is dependent on the wind com-
ponents as well as upon the constants X,,, X5, ¥}, Y15

6-9. THE EFFECT OF TOLERANCES UPON THE UNROTATED ROCKET

When the projectile has no axial spin the only tolerances which affect the motion are
those due to a malalined thrust and a malalined exit-plane centre, namely o, and «. The
other four tolerances o, a4, ®; and «, only occur in the tolerance functions x,, #, and y,
as coefficients of the spin r or of the rotational couple G. Thus we have, by (4:2:9,10,11),

p = apeitn, = %{%ewﬂ—%e"%}, #3 = 0. (69-1)

When the projectile is perfectly launched the angular deviation, yaw, and rate of turn
may be obtained from this with the help of the expressions (5:7-16 to 5:7-18) or (5-75-1 to
5-75-3) and (5-76-1 to 5-76-3), namely,

E =%, (aycite) —xz(:m{l ag e"%) +x2(jm4~locNei¢N) , (6-9-2)

d o ml . ml .

2 — yu(anet) "y et 1y i) (6:0:3)
and 7 = z,(apeite) ;22(7_71;1{ g e"%) + zz(mzlaNe%) , (6-9-4)

1 This is only possible if ¥V, < V), a condition which is always satisfied in practice.
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if the magnitudes of the four angles ay, @z, ty, #y are known at each instant during burning.
Measurements of lateral thrusts during static firings have shown that considerable fluctua-
tions can occur in the values of @z and ¢, during the burning period. The magnitude of
ay s usually much smaller than g, and it is probable that it and ¢ do not fluctuate so rapidly
as ap and ¢y.

There is, of course, no method of estimating exactly the magnitudes and variations of
the four angles for a given rocket without firing it, so that the formulae (6-9-2to 6-9-4) cannot
be used in order to predict the exact trajectory of such a rocket except in special cases where
large malalinements are deliberately built in. The chief value of the formulae lies in their
use for predicting the dispersion to be expected from a homogeneous series of rockets fired
under equal conditions. For this purpose an approximate estimate of the dispersion in
angular deviation due to any particular tolerance may be obtained by substituting for
apeir (P = N or R) the appropriate value of the standard deviation of a, this being assumed
to be constant throughout burning (see §9-8). It is for this reason that it is of interest to
know the deviation, yaw and rate of turn due to constant malalinements, and accordingly
Assumption C 3 has been made. For the case of the unrotated rocket this assumption states
that variations in

mi ml
Upy  Prs ‘Z“R: Z“Na Py

may be neglected during burning, and the problem reduces to that of finding the values
f the functi
of the functions xl(l): %(1), y1(1), 95(1), z (1), zy(1).
Since y = 0 we have, from (6-3-1, 2), ,
P(s) =A(s) =a(s) =0, p=n, | (6:9-5)
and hence, by the formulae of § 5-7 and (6-4-13, 14, 23, 24),

x,(1) = ~—V—. cosn( —u)dV, = (vo,vl), (6:9-6)
1 [s. .

0o(1) = o[ sinn(s—a) &V, = 2 Q(ugy ), (6:97)

(1) = o sinn(s—u) d¥, = nVQ(ug, 1), (6:9-8)

1a(1) = [ cosn(s—u) 7,  VP(v, 0, (6:0:9)
1 (s |

z,(1) = T/'f cosn(s—u) dV, —I—nf dv sinn(u—v) dV, = H(vy,v,), (6-9-10)

z,(1) = ——V smn(s u)dV, + ch'/ cosn(u—v) dV, = %F(vo, v1)- (6-9-11)

In the following two subsections we cons1der the two tolerances a, and «y separately.

Twp-off. The expressions (6-9-2 to 6-9-4) hold when the projectile is perfectly launched. In
general, however, the two malalinements «, and «, will each contribute to the tip-off
conditions at launch, as explained in §4-4. Thus the total angular deviation due to toler-

ances will take the form 7= (Zp+ Zg) -+ (Zog+Zovs), (6:9-12)
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where the deviations Z, and Zj are those which are obtained when the projectile is per-
fectly launched, and Z,, and Z,, are the deviations due to the initial tip-off conditions
produced by a, and «y respectively. When the initial values at launch of the angular devia-
tion, yaw, and rate of turn due to each of a, and ay are known, the values of Zy, and Zy,
can be evaluated with the help of (4-4-12) and §§ 6-5, 6-6. It is found, in nearly all practical
cases, that Zy,is much smaller than Z, and Z,, than Z,. Similar considerations apply to
the yaw and rate of turn.

6-91. Malalined thrust
We have, from (6-9-2 to 6-9-4) and (6-9-6 to 6-9-11),

Ly = “Rei¢R{H(?)09vl) "‘%F(vo, vl)}a (6-91-1)
- " ml
By = —agee|Pog,0) + 71 Qo 01, (6:91-2)
d , [

and % = ocRe‘¢RnV{Q(v0, V) —%P(vo,vl)}. (6-91-3)

Sinceml/Anis usually large, the second term in each curly bracket will usually predominate
over the first term. This means that the moment of the malalined thrust about the centre of
gravity is of more importance than the actual lateral force due to the malalinement.

The factor ez specifies the plane in which the motion takes place; e.g. if ¢, = 0 it is the
downward vertical plane.

6-92. Malalined exit-plane centre
We have, from (6:9-2 to 6:9-4) and (6:9-6 to 6-9-11),

. ml
ZN = aNequN;{T;zF(UO’ 1}1), (6'92'1)
- . ml
By = ch(—:W’szz Q(vgsv1)s | (6-92-2)
d L mlV
and _%V — aNel¢N7P(UO, ). (6-92-3)

The factor e~ specifies the plane in which the motion takes place; e.g. if ¢y = 0 it is the
downward vertical plane.

6-10. THE EFFECT OF TOLERANCES UPON THE ROTATED ROCKET
We examine here the effects of the six tolerances
' aC: aG) aLa O‘M: aNa aR

upon the motion of the rocket during the burning period when no other disturbing forces
act. The angular deviations due to any one of these tolerances ap, say, may be written in

the form Tt Zors
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where Z, is the angular deviation of the trajectory when perfect launch is assumed, and
Zpy is the angular deviation caused by those parts of the initial tip-off conditions which
depend upon «,. When the initial values at launch of the angular deviation, yaw and rate
of turn due to the presence of the tolerance «, are known, Z,, can be calculated with the
help of (4-4-12) and §§ 65, 6-6. It is the purpose of this section to derive formulae for the
remaining part Zp, and for the corresponding yaw &, and rate of turn d{,/dt.

The values of E,, d{,/dt and Z, for each tolerance can be found from (5-7-16 to 5-7-18) in
terms of the functions x,, y,, z, (v = 1, 2, 3) which are defined by (5-7-6 to 5-7-15), when the
magnitudes of @, and ¢p, and therefore y,, 4, and y;, are known at each instant during burning.
For normal service rockets it is probable that each «, and ¢, fluctuates considerably during
burning. No satisfactory method has so far been devised which determines all six tolerances
for any given projectile (see § 9-8). In most cases it is only possible to state that for a homo-
geneous batch of ammunition the points whose co-ordinates are (a,cos @y, apsing,) are
distributed randomly with a linear standard deviation ¢,, which is deduced by methods
which are often empirical, and is assumed to be constant during burning. By substituting
0p for apei®r in the formula for Z,, a rough estimate of the contribution of the particular
tolerance a, to the angular dispersion of the ammunitions may be obtained.t The quantities
apeir need not, of course, all be independent of each other,} though it is likely that most
of them are independent. |

It is for this reason that it is useful to have formulae for Z,, etc., for constant or nearly
constant a,e?z, and accordingly Assumption C 3 has been made. In addition to their use
for estimating dispersions, these formulae can be employed to find the motion of special
rockets which have had large known malalinements deliberately built in.

Assumption C 3 states that variations in the quantities a,(v) a,ez, b,(v) apeitr (v = 1,2, 3)
defined by (3-63-1) may be neglected. Of these coeflicients all are zero except the following:

be(2) = (1-29) "SI, bo() =—(1-2p), (6:101)
be(2) = — ’;Z}, (6-10-2)

a,(2) = — 'glejA, (6:10-3)

by (2) = %, (6:10-4)

bN(l):2mi/, aN(2)=’Z—l, bN(2)=—%2/, (6:10-5)
ap(1) =1, ay(2) = ’Zl (6-10-6)

Slnce ap(3) = 0 for every P it is clear from (5:7-16 to 5:7-18) that we have to evaluate
fifteen functions, namely,
, (1), x(1), xy(ir), x(ir), x5(ir),
t This estimate can, of course, only be very approximate unless some account is taken of the variations
in ¢, and a, during burning. In the case of rotated motion there is the additional possibility that larger

deviations may occasionally be caused when the fluctuations of a, ei#» resonate with the spin factor eis.
I E.g. it is probable that there is some correlation between a,, eiéx and a, eiéx.
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and the corresponding y and z functions. This is done in the succeeding subsection. In
certain cases it is necessary to approximate in order to obtain expressions suitable for
numerical calculation. These approximations are valid provided that

(1) A, A, are small in comparison with unity, (6:107)
(i) ys, = 47mG¢ is not small, say greater than 4.
Further approximations are possible at points near burnt where ys is large.
6:101. Evaluation of the functions
1 .. .

We consider first the five x functions. We obtain from Assumptions C1 to 3 and the defini-
tions in §§ 6-3, 6-4 and (6:101-1) the following expressions which hold when the lift moment
is destabilizing (0<p<fy):

0 (1) = S Br—0) R~ () B3, (6101
x(1) = —i‘?;?{zel—zzz}, (6-101-3)
(i) — - J;;V{? /{’ (e1— ew)--'-/”il_}%(eiw—eivﬂ)}, (61014

xy(1r) = zfewo{ ! (e1—eid) —

io __ i . .
T L (e )}, (6-101-5)

g (i) = 76’”"{1 1 (e =V A VR) = (Foes—A Vet 41, VR )} (6-101-6)

2pV /I
.. v2Veivo ' ‘
Similarly we have y(1) =1 5 {R,—R,}, - (6:101-7)
Ve ,
M)C(WﬂRWﬁ%L (6-101-8)
. vifeiro( 1 i id 1 e __ qi s, .
y,(ir) = —1-5— 2 {1 T (e —ei?) - (et e¢)}, (6 %01 9)
y(zr) ‘];e‘;o'o {ﬁ'y +p (eu/q ez¢) _@,_J? (eighz__ez'yS)} , (6‘101'10)

g ir) = ﬂ?;" {1 g (Veis —Veiv1—A, VR [ (VT 1, VR )} (6-101-11)

It will be observed that each of the ten functions (6-101-2 to 6:101-11) is expressed as a
difference of two parts in a manner similar to that employed in §§ 6:5 to 6-8. In these sections
the two parts corresponded to the two modes of precession of wave-lengths 2m/yA; and 2m/yA,.
In the present case, however, each part contains terms in €' as well as in e1 and ez, This
shows that the motion is compounded of three precessional motions instead of the usual two.
The presence of the high-frequency terms in e could, of course, have been foreseen, since the
disturbing forces due to the tolerances do not remain constant in direction but are carried
round with the rocket as it rotates. It will usually be convenient to collect the various terms
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in €’ together when calculating the functions (6-101-2to 6-101-11). At points of the trajectory -
not too near launch it is possible to approximate to (6:101-6, 11) by omlttlng the terms in R,,
R, and to (6-101-2, 3,7, 8) by writing
A El; e¥*D(G,,) in place of R,.
The evaluation of the five z functions is not so easy. It is necessary, in three cases, to
approximate to the function

s u
Ik — y/lk e—z"yso f eiy]lku @ ei'y(l-/\k)v d]'/;

So uv S

This can be done by replacing the double integral by
w .
m glfk D(Gor) {D(wor) — V=D (wyy)}5
the second part may be expanded in an asymptotic series, by repeated integration by parts,
the first term being A it
e et
Thus we have, under assumption (6-10-7),

The first part contributes

I, #wlé—‘l’;D(GOk) {D(wqy,) — s D(wy;)} +A—; {Gi&—%} (6:101-12)
It follows from (5-7-13 to 5-7-16) and (6-101-12) that
z(1) #i%f[(ﬁy_p) {%wlll—lD(Gm) El+%—g12——ig%(p(cu)_i%)}
~(fr+) {”w12D(G ) Ey+ ’é? - %(D(Glz)—i;’ét)}], (6:101-13)
2,(1) ‘;—p {%D(Gm)El+ﬂ—g?—igg(1)(0u)_i;d_u)}

MW,y Ay e ( A )}] ot
{G12 D(Gor) Byt gy i (D(Gu) —ingh-)] |- (6:10114)
When G, is large, e.g. at burnt, we can write

D(le) =

i

nGyy’
so that in formulae (6-101-13,14) we may replace
et . Ak ei¢
~za,l—k(D(le)—-z-——ﬂle) by e

Also we have

. Ve 1 (E; 1 G, .
alr) = =15~ 1= A{wlll Gl( (Go) —e#D(C 1)+%‘f}_lel¢)}

1 (E, 1 G
“1‘——,1“2{@1—22_6‘1( (Go) —€# D(Gy) +— o e’¢)}], (6101-15)
L VVerrE —(ieffmw,,) E,—(ie¥[mw;,)T .101-
st 2p (1—4;) wyy (- )wy, :I’ (6:101-16)

VoL. 241. A. 65



530 R. A. RANKIN ON THE MATHEMATICAL THEORY

=LA B rca-nter 5 )

ﬁy~p{§ _1_( ip Gy iy }] 101-
il (PG —e* DG+ ke ) , (6-101-17)
Veioor By+p { el By—p { i }]
_ E, -7l E,— , 6-101-18
2p Lwy,(1-4;) 1™ ”wu} wip(L—45) 7% mwyy ( )
and zg(1r) = zg,(1r) — 25, (21), (6-101-19)
where
. y eioo D(GOI)} i, A e"¢{ __zil_}:l
(i) # —igy [ [ Mo B LA 2 i i DG =6 |
(6:101-20)
and ‘ ,
. . yeioo D(Gy, )} { iy } Ay e’¢{ _&}]
zalir) = il )[ﬂ weo B 1+2, G i1+ |~ (D) e |-
(6:101-21)
Hence, approximating further, we obtain
ye"’o mwy, £, — /11~ﬂwozE2~i/12] a1,
zy(ir) = —i'o, ey it (6:101-22)

These formulae apply to the case of a destabilizing lift moment. When this moment is
stabilizing (> fy) the changes necessary may be found from the table in § 6-4.

In the following six subsections we obtain formulae for the yaw, cross-spin and angular
deviation due to each of the six tolerances separately. These results are obtained by inserting
the appropriate values of y;, g, and s, as given by (4:2:9 to 4:2-11), in the equations
(5+7-16to 5-7-18), and by using the formulae for the x, y and z functions which have just been
derived.

6:102. Displacement of the principal longitudinal axis of inertia

We have He = —qgeifo(1—2f) {x3(ir) ——712—(621;‘47/?2 xz(ir)} , (6-102-1)
Ao — —agete(1—25) fpy(ir) ~ 2D i), (61022
and Zo = —apte(1 ~26) [2q(i7) —’-”%%Q (i), (6102-3)

where the x, y and z functions are given by (6-101+5 to 6:101-6, 10 to 11, 17 to 22).
The contributions from the terms in m(dA4/dt)|QWA are usually much smaller than those
from the other terms. By (9-2-16) we have

_m(d4/dt)  mki+ qzmoo/m
QWA WA
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6:103. Malalined charge centre with respect to exit plane and centre of gravity

We have Ee=—0ag e"%j;lg‘}xz(ir), (6-103-1)
d . ml .
% = —0g e’%AIz}yz(zr), (6-103-2)
mlq,
and Zs=—uagete Asz(zr) (6-103-3)
where the #, y and z functions are given by (6:101-5,10, 17, 18).
6:104. Moalalined axial torque
We have =, = zaLe'%QI/(‘;/A x,(1), (6:104-1)
€L —1a; €is QI/?’A yo(1), (6-104-2)
and Z, = Z“LC%QI/C:/A zy(1), (6-104-3)
where the #, y and z functions are given by (6-101-3, 8, 14).
The quantity mGz/Q WA may be written, by (9-4-5) below,
% — " tan A, (6:104-4)
6:105. Displaced thrust-application point
We have Hyp = ty,€%n I/lf'A xy(2r), (6-105-1)
T ocMe‘%% 1, (i), (6-105-2)
and Loy = 0t €% MZI z,(ir), (6:105-3)
where the x, y and z functions are given by (6-101-5,10,17, 18).
6-106. Malalined exit-plane centre
- ; 2
We have By = ayeits {%l %y(1) + ml/xl( r) — AWxZ(zr)} (6-106-1)
di . (ml 2l . miz .
o = ay e (1) g i) — o a(in), (6-106-2)
. (ml 2l . z . o
and Ly = aNe’¢N{% zy(1) —l-Wzl(zr) ——%zz(zr)} , (6-106-3)

where the x, y and z functions are given by (6:101-3 to 6:101-5, 8 to 10, 14 to 18). The first

term in each curly bracket will usually predominate.
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6:107. Malalined thrust

We have Hp = 0p e"¢za{x1(1) —%lxz(l)}, (6-107-1)
Bor _ apeitalyy(1) "2 (1)), (6:107-2)
and Ly = ocRe’?‘ze{zl ——z2 )}, (6:107-3)

where the x, y and z functions are given by (6:101-2, 3,7, 8,13, 14). The second term in each
curly bracket will usually predominate.

7. SOLUTIONS FOR OTHER FORMS OF SPIN

7-1. GENERAL

We consider in this section a number of other particular cases in which it is possible to
obtain approximate solutions of the general equations in forms more or less suitable for
numerical computation. The assumptions which we shall make are the same as those made
in § 6, except that we no longer assume that the spin is proportional to the velocity. Accord-
ingly we neglect all Magnus and damping effects and assume that the acceleration is con-
stant between launch and burnt. This means that the lift moment M|, the force of gravity
and the jet forces are the only disturbing factors taken into account. Further assumptions
occurring in particular cases are listed as they arise.

7-2. LARGE CONSTANT SPIN AND SMALL OR ZERO LIFT MOMENT

In this section we obtain solutions of the equations of motion when the axial spin 7 is
constant. These solutions are valid when the contribution of the lift moment to the equations
can be neglected, i.e. when the terms in 7% can be omitted. This will be so, as we shall see,
when (i) n2 = 0, i.e. for neutral stability, or (ii) when the spin is sufficiently large and 72
sufficiently small, i.e. when the projectile is ‘overspun’. It is accordingly to be expected
that the motion will show the well-known symptoms of overspinning, i.e. that the axis of
the projectile will tend to remain pointing in the initial direction so that the yaw will build
up as the trajectory bends down under gravity.

The main equation governing the motion of the projectile about its centre of gravity is
(4-3-8). The parameter 2 occurs in this equation in the coefficient G(s) of H. And, by
(4-2-17 to 4-2-19), we have, since Magnus and damping terms are neglected,

G(s) = n+p22|V2—irff] V3.
It follows that we are justified in neglecting 7 when

n2l?
2

is small. This then may be taken to be the precise form of condition (ii) above.
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We therefore suppose from now on that #2 can be neglected. Itis convenient to use equations
(4:3-3,4) rather than (4-3-8,9). The former become, in view of our assumptions, '

V—az = f({—Z+p,e“)+gcosa, (7'2-1)'
2-{; , io d i 2
and 3}2‘—21/5’7 ”‘fﬂz + 7 (#3€7). (7-2:2)
Since r is constant we have, from (3-3-9),
o—0y=r1(t—1t,) =&, (7-2-3)
say.T Equations (7-2-1,2) can then be written in the forms
4 (V2Z) = fC+ g cos atfiy cr0d (7:2:4)
and ;’Zt{ —2ifE g} f‘u eloo+i(l— 2ﬁ)§__|_ {ﬂ ez(o'0+5)} e~ %Pk, ‘ (7.2.5)

The quantities d{/dt and { can therefore be obtained from (7-2-5) by successive integration,
and Zis then given by (7-2-4). We set down the solutions in the succeeding subsections, each
disturbing factor being considered separately according to the procedure described at the
end of §4-4. The solutions for a combination of disturbing factors can then be found by
addition since the equations are linear. Only the two most important tolerances, namely,
ap and ag, are considered. The effects of the remaining four can easily be found by similar
methods if required.
It will occasionally be possible to simplify the formulae in the following three cases:

() £ small in comparison with unity.
(B) 26 small, £ large in comparison with unity.
(y) 26¢large in comparison with unity.

7-21. Initial yaw
Suppose that Z = 0, d{/dt = 0 at the instant when the projectile leaves the rails, but that

there is an initial yaw E=E,={.

Then, since the right-hand side of (7-2+5) is zero, we have easily
- V=V,
Z= B, (7-21-1)
E=E,, | (7-21-2)
and ' : d/dt = 0. (7-21-3)

7-22. Initial rate of turn

Suppose that Z = 5 = 0, d{/dt = {,, at the instant when the projectile leaves the rails.
Then at any later instant, from (7-2-4, 5),

Z— sl 1+ oipe— o, (1-22:1)

1 This angle £ has no connexion with the angle of the same name which defines the direction of the wind.
Owing to the assumptions regarding n? the effect of wind is negligible, and so no confusion should arise.
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E= U G-V ), (r229)

and dCldt = {y, e¥F5. , (7-22-3)

In cases («) and (f) the following more approximate formulae for the deviations and
yaw hold: | . G )

~ (7T (1224)

and E_-é?;( 723, (7-22-5)

7-23. Gravity

We assume perfect launch. The effect of gravity tip-off at launch on the later motion can
be found from the formulae of §§ 7-21 and 7-22 when =, Z, and {; are known.

From (7-2-4,5) we have e m (V=T

=—E=Sy

and ‘ d¢jdt = 0. (7-23-2)
These formulae show that the projectile’s axis remains pointing in the same direction
throughout the motion.

cosa, (7-23-1)

7-24. Malalined thrust
As in § 6:10, we suppose that the thrust is inclined at a fixed small angle a, and orientation
¢ with respect to the rocket’s axis, and assume perfect launch. Then the resulting motion

is given by mif? ZE 1 1428
— i et 2Bt _ gif) 24-
Z = ingp st Ar3V{ s 2ﬂ(4ﬁ2 e) e }, (7-24:1)
L ml . .
§ = g el@sto0 W(—“l_me—rz{Qﬁ (e*—1) —(e¥—1)}, (7-24-2)
E={-Z, (7-24-3)
and %z i, €i6n*o0) i mlf) yr {eit — %Pt} , (7-24-4)

In the cases («), (f) and (y) these formulae admit of considerable simplification. Thus

L(V V)

7 =—ap e"(¢n+"°)%2-— o7 («)
= — o, i +UO)Zi(V2VI:6)2 h) (7-24-5)
— et VN0 )
B = —a,eie +ao>m}( VO)GI(/QVJFV) ()
= —10 ez(¢3+ao)ﬁ_i V2VV2 B ‘ (7-24-6)

= 0y ei(%*"o)%n;—g {%’,— ez"/”g} ' ()
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and @__ o €6r+0) ml V-7 (o)
dt 4
(7-24-7)

— iapetber™ (et _1)  (p).

These formulae take into account the moment of the thrust about the centre of gravity,
but neglect the effect of the lateral force due to the malalined thrust, i.e. the contribution
from p,. If it is desired to take this effect, which will usually be of smaller order, into
account, o, e@z*70 f(1—ei)/(7V) should be added to the expressions for Z, and subtracted
from the expressions for E. "

7-25. Displaced longitudinal principal axis of inertia

In this case we have g, = 0, and

fy = — g &P m(dA/‘Z)M(/‘i‘l_ #) : ty = —iagePo(1—2f)r.

We find the effect of 45 on the motion and neglect the contribution from g, since it is of lesser
importance in nearly all cases. We have then, from (7-2-4, 5),

Zz_iacei(¢0+a‘o)_(}_-2ﬁ)f{ i§+ 1 (_Le2iﬂ§_eig)__l+2ﬂ;’ (7-25:1)

Vo 26 1—26\ap? 4p?
. ) e2ift 1
= -ZOCCC’(%*”O){C’g— 1 - 2/? } ) (7’25’2)
and d{/dt = — o €(Poto0 p{ei — e2hE}, (7-25-3)

. Approximate formulae of the same type as those obtained in § 7-24 may be derived, the
ratio of the quantities Z, E and d{/d¢ to their counterparts in that section being

_ag€ite Ar?
agetemif”

7-3. MEDIUM OR SMALL CONSTANT SPIN AND A STABILIZING LIFT MOMENT

In this section we consider the equations of motion for the case of a constant ‘medium’
or ‘small’ spin when the lift moment is stabilizing. We use the qualifying adjective ‘medium’
to denote (a) that the spin is not too large, e.g. not great enough to cause overspinning, and
(b) that it is of a magnitude sufficient to ensure that the number of revolutions made by the
projectile during the burning period is large. The spin is called ‘small’ if () is satisfied
but not (b). The condition (a) may be expressed more precisely as follows. We require that:

(1) n?>0. _
(ii) A*?%/n?V?is small in comparison with unity between launch and burnt.

(iii) Arf/n?V3is small in comparison with unity between launch and burnt.

The condition () for medium spin is that ¢ —o, = 7(¢—#,) is large in comparison with
unity.
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Because of (ii) and (iii) we may put G(s) = n?in (4-3-8). For, by (4:2-17 to 4-2-19),

242 r
Gls) = mt b b
since damping and Magnus terms are neglected, and the second and third terms on the
right-hand side are small in comparison with the first.

We may therefore solve (4-3-8) exactly as done in § 5-2, replacing p by n wherever it occurs.
We then have

H = K, cos n(s—s,) + Kysin n(s —s,) —I—%fs {nR,(u) cosn(s—u) —R,(u) sinn(s—u)}du, (7-3-1)

where K; and K, are constants which depend upon the initial conditions and where R, (s)
and R,(s) are defined by (5-2-2,3 to 5). The values of K, and K; can be obtained from
(5-2-8, 10). Formulae (5-2-13 to 5-2-15) also hold in this case, and Z and d{/dt may be
obtained from them by using (4-3-9) and (4-4-7).

Since 7 is constant we have P(s) = —ifr(t—1,), (7:3-2)

and | A(s) = ifr|V. (7-3-3)

7-:31. Deviations due to the various disturbing factors

The angular deviation, yaw and rate of turn at any instant during burning due to the
eleven disturbing factors listed at the end of §4-4 can be found by direct integration as
described above, when the spin is medium or small. In the cases (1) to (5), i.e. initial angular
deviation, initial yaw, initial rate of turn, gravity and wind, the spin does not enter the
formulae except in conjunction with the small parametert f. Accordingly, in these cases,
the angular deviation may be expressed in the form

7, = Zoy - ifrZy + (ifr)2 Zy+ (i) Zy+ ...
= Zo+ifrZ, (7-31°1)

“approximately. Here Z, Z,, Z,, ... are independent of r and the terms decrease in order of
magnitude. Clearly Z, is the deviation which is attained when there is no axial spin and
can therefore be found immediately from the formulae obtained in §6 for the case of
unrotated motion (y = 0).

In the case of small spin ifrZ,, which is in the plane perpendicular to that of Z,, can
usually be neglected. When the spin is medium, however, ifrZ, though small is not, in
general, entirely negligible, and explicit formulae have been derived in terms of the usual
Fresnel functions. These formulae are not given here since they are fairly complicated, and
since for most purposes an exact knowledge of Z is not required. Where such a knowledge is
required it will usually be found to be preferable to obtain the deviation from the more exact
formulae of §§ 5 and 8 by step by step methods of integration, the correct damping factors
and velocity-time relationship being used.}

t Ie. the effect of the spin on the motion is due to the precession of the axis and not due directly to the

spin about the axis.
1 This has been done for various 3 in. rockets launched from spiral projectors in order to find the effect
of rotation upon (i) wind deviations, (ii) gravity drop and drift, and (iii) drift due to tip-off at launch.
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It may be remarked that the absolute magnitude of the angular deviation is usually the
same as in the unrotated case since | Z,; |2f%? is negligible in comparison with | Z;|? in
most cases.

Similar conclusions can, of course, be drawn for the yaw E and rate of turn d{/dt.

In the case of the six disturbing factors (6) to (11) due to the various tolerances, the above
remarks do not apply. For each disturbing factor travels round with the rocket as it rotates
about its axis, and the formulae accordingly contain terms in 7 due directly to the axial
spin, in addition to terms in fr attributable to the precessional motion.

A rapidly convergent expansion in terms of 7 of the type (7-31-1) is not therefore possible
unless the spin is sufficiently small. In this case Z can be expressed in a form similar to

(7-31'1), name].y, Z — Z0+irZ1,

where Z, is the angular deviation when there is no rotation, and where Z, is independent
of r and is expressible in terms of Fresnel functions.

Accordingly it is desirable to have approximate formulae for the angular deviation, yaw,
and rate of turn due to tolerances, which are valid for medium spin. We obtain such formulae
for the two most important tolerances, namely, malalined thrust and displaced longitudinal
principal axis of inertia, in the following two subsections.

7-32. Malalined thrust and medium spin

We consider here the motion due to the moment of the malalined thrust about the centre
of gravity, and assume perfect launch. Accordingly, we take, in the notation of §§ 5-2 and 7-3,

R, (s) = ag e"<¢ﬂ+"°>%e""<“‘0), Ry(s) =0, (7-32-1)
where v =r(1—=p).
Also K; = K5 = 0 so that, by (7-3-1),
¢
H=—a, e"(¢ﬂ+"0>§—f;f ert-sin n(s—u) dt,. (7-32-2)
b
It follows from (4-2-23), (4-4-7) and (5-2-13) that
E = ape@ato0Hy dljdt = ape@nto0 dly/dL, (7-32-3)
_ mlf . Lo
where Hp= -:ﬂjl;e’/”’(“’o)fto e sin n(s—u) dt,, (7-32-4)
and dr _ mlfe’ﬂ’(‘ ’°)f et~ ’0){cos n(s— )—|—@Sinn(5—u)}dtu. (7-32-5)
dt " 4
Also, by (4-3:9), (5-2-13) and (7-32-4),
Z = apeltnto0 7, = q e"¢ﬂ+”°)—zj—r(1)(to, f), (7-32-6)

where
. 17t . ., .
e (1, t) = n_Vf ebrivirtugin n(s —u) dt
fo

u

tu . N .
i f eifriutir't cos n(u—v) di,— f a’tuf eifriutirtosin n(u—v) fl;i’ (7-32:7)
1 to

143 v

Vor. 241. A, 66
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The integrals in (7-32-7) may be evaluated approximately by integration by parts and
by using the second mean-value theorem to estimate the new integrals obtained. Thus, for
example, for the third integral on the right of (7-32-7) we use the approximation

t
f ertusinn(s—u) %‘ =¢(1'ty) sinn(s—s,),
o u

where e(u) is defined by (6-82-2); the corresponding approximations for the first two
integrals are somewhat simpler and we omit the details. We obtain, finally,

‘ io(m\ . . pr .
Ot t) =~ (77 700 |Gl )+ B A it 1), (7:32:8)
where j(#,,¢) is an error term. Hence, by condition (a) (ii),
ml [(m
| 2] = an| Ze| = 2 g, J(Z) Gl00), (7:32:9)

approximately, provided that | j(¢y, ¢) | is small in comparison with

e

In view of the assumptions made in § 7-3 and the approximations used above, the range
of application of the formula (7-32-9) is not very wide, and even in favourable circumstances
the error may be as great as 20 9%,. For the purpose of estimating dispersion, however, this
inaccuracy is unimportant since the angle a, is rarely known to within even this degree
of certainty.

imi - . mlf .
We have, similarly, Br=—1 n—_Vr];l efri-tsin n(s—s,), (7-32-10)
and %,%5 = —-i%—l{e"ﬂ’(“‘@ cos n(s—s,) —~e"”("‘°>—|—7—2§;:sin n(s—so)}, (7-32-11)
approximately.

7-33. Displacement of the longitudinal principal axis of inertia

We assume perfect launch and consider the motion due to the displaced inertial axis.
This consists of two parts; we consider only the contribution from the tolerance function
43 and neglect the less important contribution from x,. We then have, in the notation of

5-2 and 73, 2

§§ : an RI(S) = —a, ei(¢a+g’0) (1 . 2ﬁ) é’l_;_eir’(t—to), (7-331)

Ry(s) = —ita,ei@cto0) (1 —2f) reirt-t), (7:33-2)

and K, =0, K;=ia e+ (1—2p) :—2 (7-33-3)
It follows from (7-3-1), (4-4-7) and (4-3-9) that ‘

B = ayel@cto0 B, dl/dt = a e boto0 d{ /dt, (7-33+4)

and 7. = o ebeto0 7, (7-33-5)

where Ho=—1e770(1—2F) rxy(1), (7-33-6)

doldt — —ie=im0 (1-28) 1y (1), (7-33-7)

and Zo=—1e70 (1 —2f)rz4(1), (7-33-8)

the functions x5, y,, z; being defined by (5-7-8, 11, 15).
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We evaluate here only the function z4(1). The functions x4(1) and y5(1) may be found by
similar methods and yield simpler results as they involve no repeated integrals. As in § 7-32
we assume that fr¢ is small and that 7¢ is large. Then we have, from (5-7-15),

_sinn(s—s,)  [*
a nV 5

1 rs . s du (v . .
— ezr(tu~to) COS n(s —_— u) du —_— n = elr(t”_t()) Sll’l n(u - U) dv
v 7, ’
So So"u v So

e i7024(1) cos n(u—s,) %Jrfsei’(‘u"f’)%

approximately. The first two terms on the right-hand side predominate owing to the absence
of any e term and give .
2,(1) = J (W) G(v4, ). (7-33-9)

Hence, we have, from (7-33-5, 8, 9),
Z == “C ci(¢a+0'0)ZC

S 7r
= ——zocce’(%*"f’)rA/(ﬁ) G(vy,v), (7-33-10)
approximately.
Since, by (7-32:9) and (7-33-10),
Zo| . o [ml .33
AR (7-33-11)

it follows that, for high spins, a displaced axis of inertia has a greater effect upon the deviation
than a malalined thrust.

7-4. VARIABLE SPIN

In §§ 7-2 and 7-3 we have obtained various solutions of the equations of motion under the
assumption of constant spin. It is possible, however, to use the same methods for other forms
of spin. Thus, for example, if the spin is ‘medium’ or ‘small’ (see beginning of § 7-3) we
may put G(s) = n% and use the formulae of § 5-2 together with (4-2-23), (4:4:7) and (4:3-9)
to find the yaw, rate of turn and angular deviation at any instant (with p = n). The correct
expressions for P(s), A(s) and ¢ must, of course, be substituted.

For example, if the spin is proportional to Vs, we have}
say, if f'is constant throughout burning, and then

¢ — oo dy* (B —tl), P(s) = —iflo—0)) and A(s) = iby*elf.

In the case of the disturbing factors (1) to (5) listed at the end of § 4-4, formulae of the
same type as (7-31-1) can be obtained for the angular deviation, etc., by expanding e~#=
in powers of fy*. The same process of successive integration by parts as that used in § 7-32
may also be employed to obtain asymptotic formulae for the deviations due to tolerances
when the spin is medium.

Since there has been, up to the present time, no practical requirement for formulae of
this type, it has not been considered necessary to include them here.

t For the 3 in. rocket with tubular charge and medium spin (r==90 rad./sec.) the ratio on the right of
(7-33-11) is approximately 6.

1 When the spin is imparted by offset fins alone, r is of this form in the early stages of flight (see § 9-5).
66-2
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8. THE GENERAL SOLUTION OF THE EQUATIONS
AND THE STABILITY OF THE MOTION

8-1. INTRODUCTION

In §§ 5 to 7 we have investigated the motion of a rocket under various restrictive assump-
tions (Assumptions A, B and C of § 3-6). The most important of these assumptions were those
concerning the forms of the spin, the acceleration and the aerodynamic coefficients, and they
were made (1) because they were believed to hold with reasonable accuracy for many existing
types of rocket, and (ii) in order that the equations of motion might be solved in a form suit-
able for practical use.

It is possible, however, to obtain general solutions of the equations without making any
of these special restrictive assumptions.t The solutions are necessarily of an approximate
form, but in any practical case the errors involved are likely to be negligible in comparison
with the errors arising from an inadequate knowledge of the necessary numerical data
(e.g. the magnitude of the aerodynamic Magnus and damping coefficients).} Although the
general solutions which we shall obtain in § 8-2 are not of a type suitable for quick or routine
calculations—partly because of their complicated form, but mainly because of the numerous
parameters whose numerical values will rarely be known to any degree of accuracy—they
are of very great value in determining the general character of the motion. In particular,
the conditions which must be satisfied if stable motion is to ensue can be deduced from them.
As will be seen in §8-5, these conditions are of a more complicated form than is generally
realized by rocket designers, since the aerodynamic lift moment is by no means the only
important factor involved.

8:2. THE GENERAL SOLUTION

As stated in the previous section, we suppose that the fundamental Assumptions A hold,
but we do not make the more restrictive Assumptions B and C (see § 3-6). Our starting point
is therefore §4, and, in particular, equations (4-3-8) and (4-3-9), which determine respec-
tively the motion of the axis about the tangent to the trajectory and the angular deviation
from the line of departure. Since the angular deviation Z can be found from the second
equation when H(s) and H'(s) are known, by simple integration, we need only solve the
first equation for H(s).

The equation (4-3-8) may be written, in the notation of (5-2-1), as

2

%%—G(s)H = R(s). (8-2-1)
Thus the behaviour of H (and therefore of the yaw) is dependent upon the form of the
function G(s) defined by (4:2:17 to 4-2:19). We shall obtain an approximate solution of (8-2:1)
which is valid when G(s) is a slowly varying function of s which does not vanish during the
part of the motion under consideration. This is likely to be the case in the great majority of
the cases considered, provided that the rocket is properly designed; we indicate, however,
in § 8:5, how the argument may be modified in cases where this assumption does not hold.
A more precise statement of our assumptions regarding G(s) is now given.

t ILe. without making Assumptions B and C. The Assumptions A are fundamental to the theory.

I This refers to ground-fired rockets only. For finless rockets fired from aircraft finer approximations
may be necessary. See § 8-5.
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We assume that the function G(s) has the following properties in the intervalt s,<<s<(s;.
(a) G(s) is defined uniquely and G’(s) and G”(s) both exist.

(b) G(s)+0 at every point.

(¢) Either —w<arg G(s)<m, or —w<arg G(s) <.

(

d) The function ” '
G¥(s) = ;o - B (8:2:2)
4 G(s) 16\G(s) -
is small in comparison with G(s).
The reason for the last somewhat complicated assumption is that the solutions which we
shall obtain will satisfy the modified equation

a’H

ds? +{G(s) +G*(s)} H = R(s), (8-2-3)
and will therefore be approximate solutions of (8-2-1) provided that G*(s) can be neglected
in comparison with G(s).

Put G(s) =G, G(s)) = Gy, G'(s0) = Goys
and write olu,0) = f 16 (w)]* duw (8-2-4)

for any u, v satisfying s, <u<<v<(s;. Because of the property (¢) above, the function [G(w)]?
is defined uniquely, and therefore, since it is integrable by (a), g(«,v) exists as a uniquely
defined function of # and ».

The procedure which we adopt to solve (8-2-1) is based upon the Jeffreys phase-integral

solution (see Jeflreys (1925) and also Kelley, McShane & Reno (1949?)). Wefirstinvestigate
the homogeneous equation LH

Ve +G(s)H = 0. (8-2-5)
Put H(s) — exp {z f 7(x) du}. (8:2+6)
Then we have H' =#H, H"= (i'—»? H,
and therefore, by (8:2-5), ' —9*+G=0.

Hence, if we put 7 = G*+¢ and assume that ¢2 and ¢’ can be neglected, we obtain
LG —2:G* = 0,
so that ¢ =HG'G™Y,
approximately. Therefore, by (8:2-6),
H = G_i‘ eig(s()’ S)
is an approximate solution of (8-2-5). In an exactly similar way we obtain the second

approximate solution H = G-te-iglso ),

These two solutions are clearly linearly independent. Accordingly, we may take as the
general solution of (8-2-5)

G\t .
| H= {E,"} {K, cosg(so., )+ K,sin g(s,, 5)}. (8-2:7)

T The point s, will usually be the position of burnt, but is used here for the end-point of the arc of the
trajectory which it is desired to investigate.
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This solution is, of course, only approximate; it can be verified by differentiation that it
is in fact the general solution of the modified equation

PN {G(5)+C* (9} H =0,

The function [G,/G]* and all other fourth roots appearing later on are uniquely defined
because of the property (¢) of G(s).

In order to obtain the general solution of (8:2-1) from the solution of (8-2-5) we must find
the Wronskian of the two functions

s (G)\E o (G\E .
HO = ('C—T?) cos g(sp,5), H® = (EO) sing(sy, ).
Itis HOHE — HO'H® = G,
Accordingly, the general solution of the equation (8-2-1) is
G\t . s R(u) . o
H(s) = (E—) {K, cos g(sq,5) + Ky sin g(sq, §)} + [C6) G@T G(u)]ismg(u, s)du, (8-2-8)

approximately. Here K; and K, are arbitrary constants which depend upon the initial
conditions. By (4-4-8,9) we have
| K, =H, =V, Ey+w,(s), (8-2-9)
and K, = 1G Gg¥H,+ G5 Hy,
= 4Go GV o+ wy (o)} + GE*{CM — AWy By —Agwy (5,)

— lgcosa-tfoso) €7~ Toui(s)]].  (8:2:10)
It follows from (8:2-8) that
H(s) = () 1,0 - 15,6/ -l}cosg<so,s>-—{1<l GH+3K, G/ G} sin g (s, )]
+f [G ]k{ 4 (5) cos g(u, s) — fG((S)) sing(u,s)}du. (8-2-11)

Because of our assumption regardmg G* (s) the terms involving G'(s) in (8:2:10, 11) will be
of smaller order than the remaining terms. If we make the additional assumption regarding
G(s) that () the function 1G'(s) [G(s)]"

is small in comparison with unity,} equation (8-2-11) becomes

H'(s) = (Go,G)*[K,cos g(s,,5) — K, sin g(s,,5)] +J: l}g%:lk]?(u) cosg(u,s) du, (8-2-12)

and we may drop the first term on the right of (8-2-10). Also equations (8:2-8) and (8-2-12)
may then be put into the slightly more convenient forms

() = (50)' 15, cos o) + Kysim gl )}
+[ 160 G)1HE W) Ryle) cosglas )~ Ry singla )y, (5213

+ The property (d) is not always a consequence of the property (d) since the fact that [G'G-]? is suffi-
ciently small and can be neglected does not necessarily imply that G’G-# can also be neglected.
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and H'(s) = (G, G){K; cos g(sg, §) — K sin g(sq, )} + Ry(s)

f G u)] {G¥(u) Ry(u) sing(u, 5) + R, (u) cos g(u, s)} du, (8-2-14)

in terms of the functions R, (s) and R,(s) which are defined in (5-2-3 to 5-2-5). Here K, is
given by (8:2:9), and Ky — Ky~ Gt Ry(s,) :
= Gy ¥{los — Mo Vo Eo—Agwy (s0) — 3 (50) €79} (8-2:15)

It will be observed that the solutions obtained for H and H' agree exactly with those
obtained in § 5, where it was assumed that G(s) = p% = constant.

8:3. THE FORM OF THE PHASE INTEGRAL

Since the function g(sy,s) will, in general, be complex, cos g(sy, 5) and sin g(s,, 5) will not
always be real. Write

8(u,0) = g (4, v) —igy(u,v), | (8:3:1)
where 81(u,0) = Rg(u,0),  go(,v) = —Jg(u,v).
Then Ccos g == cos g; cosh g,+-isin g; sinh g,)
and sin g == sin g, cosh g,—icos g, sinh g,. j (8:32)
Put also GH(s) = g¥(s) —ig¥(s). (8:3-3)

Then we have, by (4-2-17),
1 . .
G = Vz(Gl"Z"Gz) = (gf —13)%

‘ G,
so that ¥ —gF = Vth 20¥ g¥ = VZ' (8-3-4)

Hence, if Gs(s) = V2| G(s) | = {G}(s) +r?G3(s), (8-3-5)
then G,=>| G, | and we have, from (8-3-4) and the property (¢) of G(s),

gt = pAGE) GO, ghls) =+ GGy G (9P, (8:3-6)

where the ambiguous sign is to be taken positive when rG,>0 and negative when 7G,<0.
Itis to be observed that gf (s) is always positive or zero. It follows, from (8-3-3) and (8-36),

that v w
o) =[ Gy (w) + G 7, (837

and &21,0) =+ [ [HG (w) ~ Gy ()i . (5-39)

In nearly all cases occurring in practice of rockets fired from the ground G(s) satisfies the
two additional conditions:

(3) Gl (5) > Os
and
(f) r°G3(s)/G}(s) small in comparison with unity.
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When these conditions hold, the formulae admit of considerable simplification. For we

then have r2G3

Gy = G, +7~7 3G,
approximately, so that g¥(s) = —I%.{Gl (P, gk = 21;5;{% (8-3-9)
It follows that (,9) f G, (8-3-10)
and (U, v) = QLKU{G )}% (8:3-11)

We shall not, however, use these approximate relations.

8:4. STABILITY

The object of this section is to consider the stability of rockets. We are chiefly interested
in the stability during burning, since the motion after burnt is no different from that of
a shell, and the theory of the external ballistics of shells may therefore be used to investigate
the stability in this part of the trajectory.t

Before it is possible to obtain precise criteria for stability it is necessary to state in definite
terms what we propose to mean by stable motion. Since stability is a matter of degree and
depends upon a variety of factors, such as the intended purpose of the projectile, it is not
obvious what is the best definition to adopt. Although in exceptional cases projectiles which
develop large yaws may reach their objectives as intended, it is clear that stability conditions
must be fairly restrictive if they are to be of use in designing rockets and in predicting
performance. Accordingly, we shall say that the motion of a rocket is stable if the yaw and
rate of yawing remain small during the part of the trajectory under consideration.

8-41. The conditions for stability in their most general form
e P w,

The yaw is given by B= H—V~-—I7. } (8-41-1)

We shall suppose that G(s) possesses properties (¢) to (d') of § 8-2. Then H(s) and H'(s) are
given by (8:2-8,12); since these equations are of a similar form it suffices to consider H(s)
when investigating stability.

Write H(s) = HO(s) + HO(s), v (8-41-2)
where HO(s) and H®(s) are respectively the first and second expressions on the right of

-2-13). Also, put
(8 ) so, pu P,(s) =RP(s) f (a2+ T/:) du. (8-41-3)
We consider the contributions of H® and H® to the yaw separately, and write

T — E(l)+3(2)~%, ‘ (8:41-4)

¥ See, for example, Kelley, McShane & Reno (19497, chapter 12). With the exception of a few extra factors,
such as acceleration damping and jet damping, the conditions for stability after burnt differ very little from
those which apply during burning, and the analysis of § 8-2 may be used with only minor modifications. The
chief differences which appear arise from the fact that, due to gravity, Z does not remain small throughout
the motion, and consequently sin @ is no longer small.
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where ED — HO e P9/V, BEO = H®e PO/, (8415)

Since w,/V is small by Assumption A 1, we need only examine the forms of Z» and E®.
If we consider the amplitude of H® it is clear that a necessary and sufficient condition
for E® to remain small is that :
elg2(s0, $)I=Pi(s)

116G,
|4KE
must be either a decreasing function of s or else must increase very slowly. Since, by our

assumptions, G(s) is a slowly varying function of 5, we may omit the factor | G,/G |* in the
above expression. On differentiating with respect to s we deduce, from (8-3-8) and (8-41-3),

that A
[3{G3(5) — G1(5)}]P < Gy(s) +e¢ (8-41-6)

where ¢ is a small non-negative quantity which is related to the maximum permissible rate
of increase of yaw with the time, and

By (8-3-5), this is equivalent to
Condition A: S = 4(G,+6)2{G, + (G, +¢€) B —12G3=0. (8-41-8)

This is our first stability condition in its most general form.
We now consider the contribution of H®(s) to the yaw, i.e. we have to examine the
behaviour of the function

80 — 3 e[ [G(u) G(s)1HGH (1) Ry(u) cos g(u,5) — Ry (u) sing(w, )} du (8-41-9)

during burning. It is not possible to deduce the conditions which must be satisfied if this is
to be small in such a precise form as the Condition A just obtained, since the behaviour of
the integral depends upon so many different factors. By (5-2-1), the function R(s)—and
therefore each of R,(s) and R,(s)—can be expressed in the form

R(s) = Ry(s) — Ru(s), (8-41-10)

where R;(s) contains the contributions of wind and gravity, and Ry;(s) those of tolerances.
We consider those two parts separately and write

B = BP + B,

. |4 s fdv
Then, since 7 = SXP {—L%} >

2P may be written in the form

E@ :L ky(u, s) exp {—qy; (u, s)*+iq12(u, 5)} du
[ o 5) exp{—gu(w5) Figualw )} duy  (41:11)

t If ¢ is this maximum rate, we may take € so that ¢ e¢"w =¢’. In applications it will usually be con-
venient to choose €' =€ =0,

VoL. 241. A, . 67
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where 7114, $) f —|—g2 }dv,

5
g1 (1, $) f {G;{()v —g¥(v }
712(t, $) f {ﬁzé af( }dva
Ga2(t; $) ZL {/5)27” +gi“(v)}dv,

and where both the real and the imaginary parts of £,(«,s) and £,(«,s) are monotonic or
slowly varying functions of « and of s. Also ,(,s) and k,(u,s) are each of the order of
magnitude of gcosa/V? by (5:2-4, 5) and (8-41-9).

If 52 is to be small, it is necessary (i) that the amplitudes of the oscillating terms in
(8-41-1 1) should be decreasing or only very slowly increasing functions of s and (ii) that the
frequency of each of the two oscillatory terms

(8-41-12)

ez gnd ez
should not be too small. The first of these two conditions is exactly the same as that obtained
for E®, namely, Condition A above. The second condition is of a different type. It is neces-
sary in order that the integrals may not build up to a large value as the arc length increases.
For this will occur if each of the two rates of precession

d
and 21722

F
| dt 12
is small. In order to show this it suffices to consider the first term on the right of (8-41-11).

It can be written in the form
d eiar2u, s)

ity et}

By the second mean value theorem, this is of the order of magnitude of

s
f k1<u, 5) e“‘hl(ua s)
So

Max gcosa

so<uzs Vy | Bor =V, ¥ (u) |
when Condition A is satisfied, since £, (x,s) and e~%1® 9 are monotonic or slowly varying
functions of u. The second term on the right of (8-41-11) is, by a similar argument, of the

order of magnitude of gcosa
max

sw<usVu | Bor + Vg8 (w) |
These estimates are, of course, meaningless if f,7 +V, g¥(«) vanishes in the range considered.
On the other hand, we have, from (8:41-11), by taking the absolute value of the integrand,
the crude result that Z? is of the order of magnitude of

s gcosu
So V3
Hence the second stability condition may be stated as follows:
Condition B: If the angle (8-41-13) is not small, then

|| Bor | — Vet (s) |
must be large in comparison with gcosa/V.

du. (8-41-13)
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This condition is actually more stringent than may be absolutely necessary to ensure that
HP is small. Thus, when (8:41-13) is not small it may happen that E remains small even
when one of f,7-+ Vg¥(s) vanishes at some point of the interval. This, however, can only

happen, in general, if di. r
gg{ﬂzvigik(s)}

remains sufficiently large throughout the interval. We rule out this possibility as being

unlikely to occur in practice.
We have now to consider the contribution to the yaw from the part Ry(s), i.e. from the
tolerances. Since each term in Ry (s) contains e as a factor, we write 22 in the form

=9 ZJJKI (u, 5) exp{— Q11 (1, 5) +1Q12(u, 5)} du
——szz(u, s) exp{—Qy (4, 5) +1Qq5(u, 5)} du, (8-41-14)
where Qi (1, 5) = 11 (4,5), Qo (u, ) = go(u,5),

Qulns) =[ {02 +eto)|dn | (8-41-15)

Quafuss) = [ |(1=2) =gt ) .

We now make the assumption that none of the twelve tolerance angles a,, ¢, oscillates rapidly
during the motion (P = C, G, L, M, N, R). Then K, (u, s) and K,(u, s) are monotonic or slowly
varying functions of # and s of small absolute magnitude. Write w; for the maximum
value of V,| K (u,s)| and V,| Ky(u,s) | during the range considered. Then w, depends
upon the spin, velocity, acceleration and the six tolerances «p. It has the dimensions of
an angular velocity, and we may regard it as measuring the total amount of asymmetry
possessed by the projectile. Then, exactly as for @, we require that Condition A shall
hold, and obtain the third stability condition, namely

Condition C: If J‘l

o

7

w,dt,

is not small, then [ (X1 —=py) r|—Vgk(s) |
must be large in comparison with wy.

The condition is again slightly more stringent than may be necessary.

It is clear that if the assumptions made regarding the slow variation of «, €/» do not hold,
and if, for example, v, is the frequency of oscillation of one of its modes of greatest amplitude,
then the second part of Condition C will be replaced by the condition that

[ (A =Fo) r4vp [ = Vet (s) |
must be large in comparison with some angular velocity associated with the amplitude in

question.

8-42. Simplification of the conditions
Although the three stability Conditions A, B and C obtained in §8-41 are suitable for
direct application to determine whether the motion of any given rocket is stable, they involve
~so many parameters of different kinds that it is difficult to ascertain what are the most im-
67-2
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portant factors govening stability. In this subsection we introduce various simplifications
in order to obtain a clearer picture of the meaning of the conditions. We shall not confine
our remarks to the burning period of the rocket, but may occasionally consider any arc of
the trajectory over which the angular deviation from the tangent at one end point remains
small. Itis easy to see that the equations continue to hold over any such arc with only minor
modifications. After burnt the parameters « and f (= —f3) must, of course, be omitted.
(For R/m is small in comparison with f, = QW/m.)

The first simplification we can make is to omit from G,(s) and G,(s) those terms which
are believed to be of smaller order than the others. Also we put ¢ = 0 and omit the equality
sign in Condition A in order to increase the stringency of the condition. The functions
G,(s) and G,(s) are defined by equations (4:2-18,19). We shall omit the terms «?, dk/dt and
(do;/dt) V from G,(s) and df,/dt from (4-2-19). Further we omit the two terms

5L b
'Vord
from G,(s). For they can be written in the form

d(r
— 14 (0
AV ( V)
during burning, and this is small when 7/V is a slowly varying function of the time, as will
usually be the case.t After burnt the two terms can be neglected since f can be omitted, and

the rate of decrease of spin is entirely due to the aerodynamic couple and is small.
We then have £
G,(s) = n} V24212 2ka, V+KT/, _ (8-42-1)
and Gy(s) = @, V—2«p,. (8-42-2)

Condition A now becomes, by (8:41-8),

S = 4{@2 V+/<+JI—;}2 [ng V2 f3r2 4 2kay V+/<{7+ {ozz V+/<+J—I;}2]~ (w, V—2«p,)2r2>0.

‘ (8-42-3)

Before reducing this further it is worth pointing out that  is an increasing function of f/V

and, provided that w, is not too great and negative, is also an increasing function of . This

may also be deduced directly from (8-41-6). From it we conclude that acceleration damping

(i.e. the effect of the terms in f] V) and jet damping (terms in «) have a stabilizing influence on

the motion of the rocket. This explains the well-known fact frequently observed in trials

that many rockets which become unstable after burnt have a comparatively steady motion
during burning.}

Now write Sy, = 4G}f}— (w, V—2«f,)?, (8-42-4)

and Sy = —4G% :n% V24-2ka, V-+ K%/—i— Gﬁ} . (8-42-5)

t E.g. when the projectile is spun by inclined jets. The neglect of the two terms may not be justifiable
immediately after launch in the case of a constant or a decreasing spin; in view of the marked effect of
acceleration and jet damping in the early stages of flight, this however is not likely to be important.

+ There are, of course, several other factors which contribute to the decrease in stability after burnt.

Among them are the effects of supersonic velocity and of accelerated motion upon the position of the centre
of pressure of the lift moment.
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Then (8-42-3) may be written in the form

S, 728, (8-42-6)
Accordingly, Condition A for stability will be satisfied in the following three cases:
Case A (i): : S1>0, 8,20, |r]|>[S/S]
Case A4 (ii): $;=0, §,<0.
Case A (iii) : S$1<<0, 8,0, || <[]
After burnt these conditions may be simplified still further, since we can omit terms in
Jfand « and obtain S, = V2(4c2 2 —w?)
26,k 2f,k'd
12 1 1 2 __
“V(m JMU)( 4 w)’
and Sy = —4V*g(n?>—af+ad)
kk'd
so that, in cases A (i) and (iii)
_ (n2 Jr/c/c’a’z) 3
mA

3
(ﬁ) — S, =2|a,|V

g (8-42-7)

(2/2k+w)(2ﬂlj’d2_w) ’

Normally both £ and £'d, will be positive, and when this is so, cases A (i), (ii) and (iii) become:

. kk'd 26,k 2, k'd
Case A (i): nzgwmAz, —-i; << ﬂlA 20 |r|>Ss.

"The first two inequalities will be satisfied if the lift moment is destabilizing and if the Magnus
moment is sufficiently small.

hoy L 2k 2pk'dy,  ,  kkd,
Case A (ii): m SOS T, W E
These inequalities will hold when the Magnus moment is sufficiently small and the lift
moment is stabilizing, or is sufficiently small and destabilizing. We have assumed here that
kk'd,/mA is not negative as will usually be the case. The modifications necessary when this
is not so are easily made.

cey 20,k 20\ k'd kk'd

Case 4 (iii): w< ~—m—1 or w> #ﬁ, and n®> __EA—Z’ [7]<S;.
This condition shows that when the Magnus moment is large stability can only be attained
if the lift moment is stabilizing (or sufficiently small and destabilizing) and the spin is
sufficiently small.

Conditions A (ii) and A (iii) combined show, in particular, that for an unrotated rocket
to be stable it is necessary that e kE' d,

mA *

The quantity k£'dy/(mA) is very small, so that for practical purposes it can be replaced by
zero in the above three cases. Further, it is likely that £, and £, may each be replaced by
g without appreciable error in most practical cases.
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Before passing on to the consideration of Conditions B and C, it may be remarked that the
stability condition usually employed in practice—and, in fact, the only one in regular use
—has not appeared in the preceding analysis. This condition may be stated in the form

fPr24n2V? = 2 —1»2P2> 0, : (8-42-8)

and is obtained when all damping and Magnus coeflicients are neglected. For then G(s)
is real and equal to 7%+ f#%2/V?, and this clearly must be positive if the yaw equation (4-3-8)
is to have stable solutions. Alternatively we may deduce (8-42-8) from (8-41-6). For if we
put ¢ = 0 and neglect all damping and Magnus terms, we obtain G, = 0, G; = G}, and

hence, since G(s) 40, Gy(s) = n2V2 f2r2>0.

We now consider Condition B of § 8-41. The expression (8-41-13) is of the order of magni-
tude of the angular deviation due to gravity,T and is therefore small during burning, by
our assumptions. Accordingly Condition B does not apply to the motion of a rocket during
burning, and, in fact, will only be of importance over arcs of the trajectory over which the
gravity drop is appreciable. For such arcs the assumptions regarding the smallness of Z
are, of course, not valid, and we are therefore not strictly justified in applying the formulae
of §8:2 in order to examine stability. The modifications which are necessary in order to
make the theory applicable to the whole trajectory have, however, only a minor effect upon
the stability conditions, since the yaw will still be expressible as a sum of parts ZV, Z@ and
5@, and ZP will still be of the form (8-41-11). The functions £, (4, s) and £,(«, 5), although still
slowly varying or monotonic, will, of course, be no longer independent of ® and V' (see, for
example, Chapter 12 of Kelley, McShane & Reno (1949?)). It will therefore be possible to
draw similar conclusions regarding the stability of the motion.

Accordingly, we proceed to examine Condition B in the case when the gravity drop is
not small. We omit terms in « and f since we need only consider the motion after burnt.
Then Condition B states that

K
| Bor | = ((Go+- G = £ 225 (842:9)
where | K| is large. It follows that .
Kgcosa)?
Gt Gy = 2| for | =57
and hence r2G% = 4{|/)’zr[ _ Kgcos oc} l:{[ﬂQ _ Recos a} -G :| (8-42-10)

If we can neglect Magnus and damping terms in comparison with terms in 7, n? and K
(8-42-10) simplifies considerably. For we then have

Gy = | G| =G, = V>4,
since, by (8-42-8), G, must be positive, and then

g2 2 | Ar] Kgcosoc(l B Kgcoscx)
- 7 2| pr V)
+ This is obvious if ‘infinite stability’ (n2 = o) is assumed, and is in fact true whenever Condition A is
satisfied.
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Also Kgcosa<|fr|V by (8~42-9), and therefore

| Kfir | g cosa

| n?| > 73 (8-42-11)

Accordingly, in this case, Condition B for stability states that n* must be large in absolute magnitude
wn comparison with | pr| gcosa
s

if the gravity drop over the part of the trajectory under consideration is appreciable.

The type of instability which ensues when Condition B is not satisfied may be called
non-precessional instability, since it occurs when one of the two modes of precession is of very
low frequency. It is also known by the more special names of vertex instability or overstability
since it is clear that | fr| gcosa/V? will be large (a) near the vertex when the velocity Vis
least and cosa =1, and (b) when the spin is very great. In fact

2|prlg
[n2| V3

is the so-called vertex yaw.

We now examine the Condition C for stability. Just as in the case of Condition B, this
condition will not be important except over long distances, since otherwise

S
f wpdt,
So

will remain small. We shall therefore suppose that this quantity is not small. This means
that a, is the only tolerance which we need consider, since the other five cease at burnt.
As mentioned before, the solution obtained in §8-2 does not apply unless the angular
deviation of the trajectory remains small. The part E# of the yaw will, however, still be

given by an expression of the form (8-41-14), and Condition C for stability may accordingly
be put in the form

rPGE = 4| (1—fy) r | =K o2 [{| 1 —fo) | =K 0r}* - G{], (8-42-12)
where | K / | is large in comparison with unity.
When Magnus and damping terms are omitted, this reduces to
n?Vt=r2(1--2f)—2|r| (1 —pf) K wp+ K% 0.
Now, by (4-2-22), (5-2-4,5) and (8-213),
wr +|ug| = (1—28) | ac.
Hence we have n2V? =12(1-2f) [1-2(1—F) K'ac+K'e2(1—28)]
= 2 (1—2) (1 —K'ag) {1 — (1—2f) K’}
=12(1—K'ap)2
We therefore conclude that Condition C for stability will be satisfied except when
ftraccdt

) . to
is not small, and n?V? = 12 approximately.
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The type of instability which ensues when Condition C is not satisfied may be called
resonance instability. It is clear that such instability can only occur when the lift moment is
stabilizing and the spin-velocity ratio is extremely low.

8:43. Summary

We summarize here, in more general terms, the conclusions which can be drawn from
the preceding mathematical analysis.

We have found that if the motion of a rocket along its trajectory is to be stable three
important conditions, which we have called A, B and C, must be satisfied. Corresponding
to these three conditions there are three main types of unstable motion which can arise when
the appropriate condition is violated. It is convenient to call them instability of type A, B
and C respectively, and we consider them individually below.

Instability of type A. This type of instability is easily detectable in flight since the yaw builds
up rapidly when Condition A is not satisfied. In the case of rockets the instability may not
appear till after burning has ceased, since the acceleration of the projectile, and the gases
ejected at the rear end, exert a damping effect upon the yaw. For this reason the conditions
A (i), (ii) and (iii) of § 8-42 are likely to be more stringent after the end of burning. Accord-
ingly, when a rocket is designed which is to have a useful trajectory beyond the end of
burning, the stability criteria should first be applied with the values of the parameters
appropriate to the end of burning.t With shell, on the other hand, instability of type A
is most likely to appear immediately after the shell has left the gun barrel, and for this reason
is often called muzzle instability.

Condition A depends in a complicated way upon the aerodynamic force and couple
coefficients, and for this reason instability can manifest itself in a number of different cir-
cumstances which, to the layman, might appear to have very little in common. The two
most important factors are the lift moment M, and the Magnus moment M;. Their effects
may be described broadly as follows.

(a) If the lift moment is destabilizing (i.e. if the associated centre of pressure lies ahead
of the centre of gravity) the motion will be unstable unless the Magnus moment is small
and, at the same time, the spin is sufficiently large. Ifthe Magnus moment is large, instability
is unavoidable (Case A (i)).

(b) If the lift moment is stabilizing and the Magnus moment is sufficiently small, the
motion will be stable, whatever the magnitude of the spin may be (Case A (ii)).

(¢) Ifthe lift moment is stabilizing and the Magnus moment is not small, the motion will
be unstable unless the spin is sufficiently low (Case A (iii)).

These statements are based upon the form of the stability conditions after burnt. For
a more detailed and qualitative account the reader is referred to subsections §§ 8-41, 8-42.

The type of instability which occurs when the lift moment is destabilizing is the most
common in practice, and is the only type referred to in most accounts. Unfortunately, owing
to lack of information on the magnitudes of the coeflicients of the damping and Magnus
forces, it is not possible in practice to apply the inequalities occurring in the Cases A (i), (ii)
and (iii) of § 8-42, and for this reason it is usual to employ the less accurate condition (8-42-8)
alone, and to ensure that it is satisfied by a comfortable margin.

t These remarks do not, of course, apply to fire from aircraft.
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The type of instability mentioned in (¢) above has been observed with certain experi-
mental rockets (fast spinning projectiles with straight fins and large length-diameter ratio),
and, in fact, the inequalities of Case A (iii) have been used in order to obtain rough informa-
tion on the magnitude of the Magnus moment.

Instability of type B. This type of instability, which may be called non-precessional instability,
is unlikely to appear during the burning period of a rocket since it builds up very slowly over
long distances. It occurs when one of the modes of precession is of very low frequency so that
the axis of the projectile, instead of precessing round the tangent to the trajectory, tends to
stay pointed in the same direction or else precesses only very slowly. As would be expected,
it is near the vertex of the trajectory, where the curvature is greatest, that this type of
instability generally appears, especially if the Q.E. is high. Non-precessional instability will
occur ultimately with every projectile if the axial spin is increased indefinitely. This implies
that there is an upper limit to the amount of spin which it is desirable to give a projectile.
Since, in case (a) above, there is also a lower limit, it follows that in many cases it may
require considerable care to decide the optimum amount of spin to impart.

Instability of type C. This type of instability can only occur when the projectile has a con-
siderable degree of axial asymmetry, for example, if the displacement of the longitudinal
principal axis of inertia is appreciable.f Instability will then occur if the lift moment is
stabilizing and if the lateral yawing motion resonates with the axial rotation, i.e. if the spin
is low and n2V? = 72 approximately. Accordingly, we may call it resonance instability. It builds
up slowly over long distances in the same manner as non-precessional instability, and is
therefore unlikely to occur during burning.

8:5. FURTHER REMARKS

The investigation of stability carried out in §8+4 has been based upon the general
solution of the equations of motion which was derived in §8-2. This solution is an
approximate one which holds when the function G(s) possesses the properties (a) to (d)
of that section. It may therefore be of value to indicate how the procedure may be
modified when these properties, and in particular (), (¢) and (d), are not possessed by the
function G(s).

In the first place, suppose that G(s) vanishes at some point of the interval. In practice
G(s) is, of course, unlikely to vanish identically since it is a complex function of s. It is of
value, however, to consider this case since it is of importance when the approximation
G(s) = n*+p%?%/V?is made. If n?is negative, G(s) may increase through zero from negative
values to positive values as the velocity increases. The solutions obtained will clearly not
hold near a zero of G(s) since G(s) occurs in the denominator in (8-2-8). If, however, G(s)
has a zero of order m at s = y say, it is possible to approximate to the solution of the differen-
tial equation by means of Bessel functions of order 1/(m+2) near «, and by this means bridge
the gap between the solutions valid for values of s on either side of the zero (Goldstein
1928).

t This is the only tolerance which has been considered in the mathematical analysis. The same pheno-

menon, however, may occur if the rocket has fins which are bent or damaged, as this may cause a malalined
torque and set up a slow rotation which may ultimately resonate with the lateral yawing motion.

Vor. 241. A. 68
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This case is of particular importance in connexion with the projection of jet-rotated finless
rockets from aircraft, since then n2+#%?/V? will be of the form

66) = —v+pr(1-7)

where Uis the aircraft speed. In practice it is usually not possible to make y sufficiently large
so that this expression is always positive, and therefore the condition (8-42-8) for stability
is not satisfied in the early stages of flight. It should perhaps be mentioned that it is doubtful
whether the above approximation to G(s) is valid in this case, since, even if Magnus forces
and jet and aerodynamic damping forces are negligible, the terms ff/V and —pg(dr/dt)|r
appearing in (4-2-19) no longer cancel each other out, since the spin is not proportional to
the total velocity. A better approximation is
2

G(s) = —V2+ﬂ2’}/2(1——g) —{wi/)’a/]ng, (8-5'1)
and then conditions (5) and (¢) are both satisfied. The solution obtained in § 8-2 can therefore
be used provided that the condition () is satisfied. In this particular case it is, however,
to be expected that the function defined in (8-5-1) will not possess the property (d) since its
imaginary part is a rapidly diminishing function of the velocity.

Accordingly, we now consider the general case when G(s) possesses the properties (),
(b) and (¢) but not (d). We then have to carry the approximation of § 8-2 further by putting
7= GH+-LG G +e,,

and to determine ¢, from the equation

' —n*+G = 0.

This will, of course, make the solution more complicated, particularly if further terms
€3, €4, ... are necessary (see Wentzel 1926). In general it may be concluded that if terms
€5, €5, ... Tequire to be taken into account, this method is not likely to be of much use, and, if
the equation cannot be transformed into a form more amenable to approximate treatment,
numerical methods or else a differential analyzer should be used. In the case when G(s)
is given by (8-5-1) this last course is to be preferred, since the form of the motion can be
extremely sensitive to small variations in »2, y and U and approximate treatments of the
general case are therefore likely to be considerably in error.}

In conclusion it may be remarked that the condition (¢) on G(s) is not a vital one. The
analysis may be carried out as before when it is not satisfied. It will, of course, be necessary
to keep track of the variation of the argument of G(s) in order that the functions [G(s)]* and
[G(s5)]* may be defined properly. For example, the function g (s) may take negative values
along some parts of the trajectory.

8:6. HISTORICAL NOTE ON THE STABILITY CONDITIONS

The definition of stability which we have used in § 8-4 and the procedure which we have
adopted to find the three stability conditions A, Band C differ somewhat from those employed
by other writers. Thus Condition B is generally not mentioned in chapters dealing with

t With the help of the Manchester differential analyzer about 100 solutions of the yaw and deviation
equations, corresponding to different values of the parameters »2, y, U and f'were run off in about a fortnight,
and form an extremely valuable set of data.
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stability, but appears in those chapters which are concerned with drift and the ‘yaw of
repose’, while Condition A, or some form of it, is usually derived by substituting = = 4 e¢*
in the equation for the yaw (whose coeflicients are assumed to be slowly varying or constant
functions) and determining under what conditions ¢ is real. The method of § 8-4 has been
preferred, particularly in view of the highly oscillatory character of the function R(s), and
because of the large variation in velocity during burning.

The Conditions A, B and C have been based on the stability conditions obtained earlier
(Rankin (1943 a, § 3-4)) for the particular case of spin proportional to velocity. Condition A
of § 841 is identical with that obtained in Chapter 12 of Kelley, McShane & Reno (19497,
first issued as a report by Kelley & McShane 1944), except that they include terms
involving sin ® which are probably of smaller order than the remaining terms, and are
negligible during the burning period of the rocket because of our assumptions. Their Cases I
and II correspond exactly to our cases A (i) and A (ii), (iii) respectively, our parameters a,
and S, being essentially equivalent to their s; and s,s;. Similar relations were also given
earlier by Nielsen & Synge (1946, first issued 1943).

The earliest occurrence of a stability condition of a type more stringent than the
classic ‘spinning-top condition’ (8-42-8) that we can trace is that given by Fowler ¢t al.
in the Text-book of anti-aircraft gunnery (1925). The condition given there is implicit in their
earlier paper (1920), and is a slightly weaker form of our Condition A (i) in which the lift,
lift moment, Magnus moment M, and damping moment M, are the only forces and couples
included.

The Condition G does not appear to have been stated before in mathematical terms,
probably because it applies only to asymmetric projectiles with a stabilizing lift moment.

9. THE EVALUATION OF THE PARAMETERS

9:1. GENERAL

In order to apply the mathematical solutions of the equations of motion to any particular
rocket, it is necessary to know the numerical values of the parameters which occur. These
parameters fall roughly into six groups:

(i) The velocity V and the distance travelled s at each instant.

(ii) The axial spin.

(iii) The initial conditions at launch from the projector (see § 3-7).

(iv) Parameters directly connected with the consumption of the charge during burning,
such as the mass m, the moments of inertia 4, C, the distance /, the damping parameter K
and the ratios f, £, and f,.

(v) Parameters depending upon the aerodynamic coefficients such as n%, a; and a,.

(vi) Parameters depending upon asymmetries of demgn and functioning and on the

manufacturing ‘tolerances’, e.g. &z, ¢p, €tc.

These are not rigid divisions, as there is a certain amount of overlapping between the
groups. Thus the aerodynamic parameter »2 depends also upon the velocity and the trans-

verse moment of inertia 4.
68-2
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In this section it is not proposed to give a complete account of the methods which can be
used to determine all the parameters involved. Such an account, if comprehensive, would
be of a highly technical nature and would take up a considerable amount of space. Thus,
for example, the estimation of the parameters included in groups (i) and (v) depends upon
an accumulation of experimental data (static firing tests, photographic observation, wind
tunnel tests, etc.), so that the methods used, which are often of an empirical nature, are not
fixed but are constantly being modified and improved as new data become available. We
shall confine our attention to those parameters whose form and variation during burning
can be deduced from the preceding mathematical analysis, i.e. to the parameters occurring
in groups (ii) and (iv). For certain designs of projector it is possible to extend the mathe-
matical theory to cover motion on the projector and so obtain estimates of the parameters
in group (iii). It has, however, been found that the values of the initial yaw, initial rate of
turn, etc., obtained in this way are in many cases appreciably less than those deduced from
the analysis of photographic records of actual projectiles in flight;{ further, it is necessary to
make assumptions regarding the character of the motion on the projector which may not
be warranted. For these reasons we do not consider the third group. The sixth group of
parameters is one which, although not absent in other missiles, is of especial importance for
the rocket, since it forms the major cause underlying the large dispersion which is so character-
istic of the weapon. For this reason, we discuss briefly in § 9-8 the problem of determining
the parameters in group (vi), but do not consider in detail any of the practical methods
which can be used for this purpose.]

In §§9-2 to 9-6 we shall assume that the velocity, or else the total mass, is known at each
instant.

9:2. PARAMETERS CONNECTED WITH THE BURNING OF THE CHARGE

The decrease in mass during burning affects the position of the centre of gravity and the
moments of inertia. We give here formulae from which the values of /, 4, C and other para-
meters can be calculated at any instant when the total mass at any instant is known. These
formulae apply to certain simple forms of charge which are commonly used, and are valid
when the rate of burning is uniform at all points of the charge surface. Similar formulae
may be derived for other types of charge.

The quantities [, m, 4, C have been defined with respect to all the matter included within
the outer surface of the rocket and within the exit plane, i.e. the burning gases in the interior
of the projectile are included as well as the solid components. Since the mass of these gases
is very small, it is legitimate to neglect them when evaluating the parameters.

We consider two types of charge. Each type consists of a number N, of similar tubular
sticks of length [, internal radius 7, and external radius R,.

Type 1. The sticks are all symmetrically disposed with their axes lying on a cylinder of
radius p, whose axis passes through the charge centre G, and is approximately parallel to

+ This discrepancy is really not surprising when it is considered that the effects of blast from the burning
gases ejected from the rocket, and of friction, during the motion on the projector, are largely unknown, and
cannot therefore be adequately taken into account in the mathematical theory.

+ The Ministry of Supply ‘monograph’, upon the mathematical part of which this paper is based, contains
chapters devoted to the estimation of all the parameters in groups (i) to (vi).
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the rocket’s axis OC,. When p, > 0 we assume that N,>3. When p, = 0, N, = 1, i.e. the charge
consists of a single stick.

Type 2. This is similar to type 1 (p,> 0), but there is an additional central stick of the same
dimensions. To avoid overlapping we must have
. pe=2R,.
We assume that N, >4.
In the most usual arrangement of type 2, N, = 7 and p, = 2R,, i.e. six sticks of charge
are closely grouped about one central stick.
The restrictions on N, are necessary in order that the symmetry may be of order greater
than 2.

Write 1 charge of type 1,
b= 1 —%7 charge of type 2, | (9-2:1)
and put =R (922
Kt = 3(RZ+17) +IpZ. (9-2-3)

When p, = 0, «, and & are respectively the transverse and axial radii of gyration of a single
unburnt stick of charge about its centre of gravity. Write ¢ for the mass of charge unburnt

at any instant. Then ¢ = m—m,. (9-2-4)

It is easy to show that, at any instant during burning,

m
l=loo—l——’%(m00~—m) :ZQI“HIT;;"O, (9-25)
A = Aoy (mog—m) [ 4 g0 S00LE) (R ), (0-2:6)
m 8¢5
and C— Cyy (myg—m) {Kg#%;ﬁ? (R.—r.y). (9-2-7)
00

These formulae are valid for both types of charge provided that the solid charge does not
move about in the body during burning, and if no burning takes place on the flat ends of
the charge sticks. They may be used even when the flat ends form part of the burning surface
provided that R, —r7, is small in comparison with /.. This condition will usually be satisfied

in practical cases. Since
P 6_(600+c) (R,—1,)?
8¢Z, ¢ e

will usually be quite small in comparison with ;/? and therefore with %, we may write

We shall also write C=Cho— (mgg—m) K2. (9-2-9)

Both (9-2:8) and (9-2-9) are exactly correct when ¢ = 0 or ¢ = ¢,. The maximum errors occur,
in either case, when ¢ = ¢, and are

Coo (R, —1,)* Coo (R, — rgX
1273 2nd 6./3

in the two cases. Both these amounts are usually quite insignificant.
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Yaw damping. In order to evaluate the damping parameter « of (4-27) it is necessary to
know d4/dt. We have, from (9-2-6),

dA _ 2 zm(z)o (coo—¢) (cgp+2¢) 2
Gy e T R (9-2.10)
N 2 2@9 e
= — QUi+ 0L (9-2:11)
It follows that m2
K = %{P—K%qzﬁ}. (9-2-12)

The integral of « is required in order to evaluate the damping function P(s). We have

y _ ik mvo_b@%“‘Kﬁ) — 494, K5
f,f‘”“ 5 8T 2 Ayt

_1[2k% mmg -+ bmo(m +mgy) — 2¢°mom }

1| #Ka Mmoo 0 0 0™00 9.

x coth { (e —m) (-4 g)F , (9-2-13)
where b= MAOO——KE, + ¢ (9-2-14)

00
Since this formula is not asimple one, it may be preferable to obtain thisintegral by numerical
integration from (9-2-12).

Spin damping. The damping effect of the jet upon the axial spin can be determined when
the integral 1Q dt’

o ¢

is known. We have, by (9-2-9),

le_t/ 1 Cog __ Mgg—my Coo o
0O TR T8 A

Displacement of the longitudinal principal axts of inertia. In § 6-102 the quantity m(d4/dt)| QWA

occurs. By (9-2-11), we have m(dA[dt) _ mk% - g*mdy/m (9-2-16)
QWA wa |

where 4 is given by (9-28).
In all the formulae given above the mass m has been the independent variable. If desired,
the various quantities can be expressed in terms of the velocity ¥V by means of (4-4-3).

9:3. THE FORM OF THE AXIAL SPIN

Spin can be imparted to a rocket in a number of different ways. We consider here two
methods of spinning a rocket which we shall call jet rotation and fin rotation. In jet-rotated
projectiles an axial torque is obtained by causing the burning gases (or a proportion of them)
to escape through a system of inclined nozzles. A variety of different designs of multiple
nozzle systems can be used (see §9-4). By fin rotation we mean any method in which the
fins are used directly in order to provide a torque. For example, if the blades are offset, such
a couple will be produced by the action of the aerodynamic forces in flight (cf. §3-53).
Alternatively, the spin may be imparted by causing the fins (or other bearing surfaces) to
slide against spiral rails while on the projector. Such methods are considered in §§ 9-5 and 9-6.
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In practice it may be found convenient to employ several methods of rotation at the same
time. In such cases the best results are usually obtained by distributing the amount of
rotation required among the different methods according to definite ratios (see §9-5).

As would be expected, the spin during flight can be reduced considerably if the projectile
has large fins, unless they are offset by a suitable amount.

We start from the general expressions for the spin given in formulae (4-4-4, 5). We shall
suppose throughout that the spin 7, at the instant of ignition is zero. It follows that

re %f ; (Gr+ TR V2A,) exp{ f (TVa-+ Q) dt”}

in the particular case when no additional couple acts before launch. When such a couple
does act (for example, in the case of launch from a spiral projector) formula (4-4-4) must
be used. In the integrals occurring in these formulae G,+ 1", V?A, is a function of the time
¢ and (I'Va+ Qk2)/C is a function of the time #”.

In order to find 7 it is therefore necessary to know the values and variation of a number of
quantities such as C, G, I'y, I'y and @ during burning. We assume that the rate of burning
@ is known at each instant; the axial moment of inertia C can then be found when the dis-
position of the charge is known (see §9-2). Also the aerodynamic parameters I'; and T,
are assumed to be known. The jet torque G, can be found, when the form of the nozzle
system and the charge characteristics are known, by the methods given in the following
subsection.

The term exp{ f QF2 dt”}

is called the jet damping factor. It can be evaluated when the form of the charge is known.
We have, in fact, from (9-2-15)

(9-3-1)

"€ g log G, (9-3-2)
Jo
where «, the axial radius of gyration of the unburnt charge, is given by (9-2-3).

exp{——f I'yVa dc} = exp{ FCa ds”} = e 7659 (9-3-3)

is called the aerodynamic damping factor.
It follows from (9-3-2, 3) that the total damping factor is

exp{ f (T, Vakaz)dt”} (% ) — (9-3-4)

where v = k2/k2. (9-3-5)

9-4. SPIN IMPARTED BY INCLINED NOZZLES

We consider the following general design of multiple nozzle. It is assumed that the same
nozzle system is used for propelling the projectile forward as for imparting the spin.

9:41. The nozzle system

Suppose that the nozzle system consists of N concentric rings of similar nozzles with say
n, equally spaced nozzles in the pth ring. There may also be a central nozzle which is not
inclined; put n, = 0 or 1 according as there is not or is such a central nozzle. Consider any
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nozzle of the pth ring (p>0). Let its central axis be a distance a, from the axis of the pro-
jectile, and let A, be the angle between them. Let 26, be the diameter of the nozzle (perpen-
dicular to the nozzle’s central axis) at the exit plane. Then, if the amount of gas emitted
from each nozzle is proportional to its cross-sectiont (i.e. proportional to 4), and if, for each
nozzle, the resultant gas velocity W’ is along the central axis of the nozzle (‘aberration’ due
to spin being ignored), the total ‘thrust’ is approximately

N N
QW = QW' 3 nb3cosd, | 3 n,83 (9-41-1)
p=0 p=0
N N
and the axial torqueis  Gp— QW' 3 n,q,3sind, [ 3 n, 0. (9-41-2)
»=0 p=0
We define A, the effective nozzle inclination and a, the effective pitch-circle radius by
N N
cosA, = 3 mb3cosh, [ 3 n,b3, (9-41-3)
»=0 $=0
. N . N
and a,sin, = Y npbf,aﬁsmAp/ > n, b2, (9-41-4)
£=0 $=0

so that the thrust and torque are given by
QW = QW'cosA,, Grp= QW a,sinA,. (9-41-5)

It will be noted that the expressions for the thrust and torque do not take into account the
velocity of the gases relative to the nozzles due to the spin. The effect of the spin is to diminish
the angle of inclination A, by approximately a,7/V. In the case of the thrust this effect is
negligible, since a,7/V is small by our Assumption A 1. In the case of the torque it has already
been taken into account by the jet damping factor. ’

The effective radius of gyration £, of the exit plane is given byZ

Qk2 = OG,. f puyu X (& X u) dS,
So

where S, is the total set of exit planes of the individual nozzles, and u is a vector from the
centre of S;. This formula holds even when the various exit planes are not coplanar, and gives

N , N
B= 3 nlap 0 oot A1 3 n,b (9-41-6)

approximately, where a; is the distance of the centre of the exit plane of a nozzle in the pth
ring from the axis. Clearly a; =>a,.

So far the relation between the radii a, and the angles of offsetting A, has been quite
arbitrary. In order to obtain the maximum efficiency, however, it is desirable that there
should be some relation between them when there is no more than one nozzle ring. Thus,
although it may be possible to produce the desired torque in a variety of different ways it
will generally be advisable to design the nozzle system so that the thrust QW is as great as
possible. On comparing (9-41-1, 2) we see that this implies that

lta,nA1 =—1~tanA2=...=—1~tanAN, ' (9-41-7)
a, a, ay
when there is more than one ring of nozzles.

+ Tt is assumed that the expansion ratio of exit area to throat area is the same for each nozzle.
T See § 2:5. For a symmetric projectile k = OK = OG,,.
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A particularly common case is that of a single ring of 7, nozzles with or without a straight
central nozzle of the same size. Then we have

_ nmg+n;cos A L
cosA, = atn (9-41-8)
a,sinA, = e sinA,, (9-41-9)
0+ 1

o ma? | 2ny+n(14cos?A)) ,, .

and =t oty O (9-41-10)
In all cases the velocity is given by

V= Wlog = W'cosA log (9-41-11)

approximately, by (4-4-3), since Vj, = 0.

9-42. Rockets with small fins or no fins

We assume that there are no fins or that the fins are not offset and are sufficiently small
for the aerodynamic damping to be negligible. We then have, from (4-4-4), (9-3-4) and

(9-41-5),
N —v 1-v
e o0
_ Wa,tan A, Co\!™?
=) 1)l (9-42:1)
When no additional torque is imposed before launch we can use (4-4+5) in place of (4-4-4)
and then obtain L Va,tan A, { (% )1—1;_ 1} (9-42:2)
~ (kg—k7) log (mgo/m) \ € '
Equations (9-42-1, 2) hold provided that «,5k,. When «, = k, we have
_Wa, tan Ae Gy o

_ Va,tan A, log (Cy/C)

in place of (9:42-1), and 9-42-4
tn place of (0-4271 % 1og (mog/m) (0ra2:4
in place of (9-42-2).
Both equations (9-42-2, 4) may be written in the form
r=9yV, (9-42-5)
_a,tand, log (Co/C) [, , (—H2) ] ™
where =2 log (mygm) {1+ 67 log C 0. (9-42-6)
for > 0. At the instant ¢ = 0 Y =%Y00 = 7—”"0—46%. (9-42-7)
00

For many designs of rocket the axial radius of gyration of the complete projectile does not
alter appreciably during burning, and «% and 42 are usually approximately equal. It follows
that, in these cases, y remains approximately constant during burning. For some types of
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projectile, however (particularly those with light alloy motor tubes), the increase of the
axial radius of gyration during burning may not be negligible, and then y will usually decrease
during burning. Itis, of course, important that the correct value of y should be used (i) when
the stability is critical, and (ii) when the metal is highly stressed owing to a high rotation.
The slight change in y during burning is, however, not important (except in case (i)) when
estimating dispersion, wind deviation, gravity drop, etc., since, as remarked elsewhere, it is
in the early stages of flight that the greater part of the deviation of a rocket is built up. Thus,
when using the formulae of §§ 5 and 6, the value y, of y at launch, or the value y,, at ignition,
may be taken.

9-43. Rockets with large fins

If the fin area is appreciable the aerodynamic damping may be considerable. The spin

is given by c

Wa,tan A, [t i Co\'™”
= ___e________e _T(S'! S) J— 4 _7(307 3) ._._Q o .
r C ftDQe (C) dt’ +rye (C) (9-43-1)

when the fins are not offset. It is necessary to know the acceleration at each instant during
burning in order to evaluate this integral. Even when constant acceleration is assumed
(9-43-1) cannot be very much simplified unless the jet damping is negligible. If no additional
couple acts while the projectile is on the projector (9-43-1) can be written as

Wa tan A, [t ch\
— € T e ~7(s’, s) [ L. 4 49
r c JOQC (C) ar. (9-43-2)

For a short distance after launch while 7(sy, s) is small the analysis of § 9-42 can be applied,
and (9-43-2) then gives
F= gV = Mol AN, aegotoan A, (9-43-3)

approximately. This approximation cannot be used unless 7(s,, s) is small.

9:5. SPIN IMPARTED BY OFFSET FINS

We assume that each fin is offset by an amount A, at its centre of pressure, as described
in § 3:53, and consider the spin produced by this means alone. The coeflicient I'; is assumed
to be known and to be approximately constant (see § 3:53). Then, by (9-3-1),

— FFAF ! 2 a—1(s’,5) C/ - 4 -
r-—TfOVe ((7) dr'. (9-51)
The angle A, is assumed to be small. If this is not the case the assumptions made in § 3 do
not hold, but a rough estimate may be obtained by replacing Ay by sin Az in (9-5:1).

The integral in (9-5-1) will, in general, have to be evaluated by step-by-step methods. If

C does not vary appreciably during burning (9-5-1) becomes
r= F1""A"’J‘SI/'C“T(S"‘) ds’. (9-5-2)

_ Coo Jo
During the early part of burning while 7(sy, 5) is small this gives

2T,

3000 I/s) (9.5.3)
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approximately, if the acceleration is constant. Formula (9-5-3) may be a valid approxima-
tion throughout burning if the fins are small and if the time of burning is short. For rockets
with longer times of burning it cannot be expected to hold except in the immediate vicinity
oflaunch. For such rockets, especially when fitted with large fins, the aerodynamic damping
becomes appreciable as the velocity increases, and the spin approaches the limiting case in
which the relative wind at the centre of pressure of each fin is parallel to the fin surface. Thus

during the later stages of burning AV
F

(9-5-4)

b
ar

approximately.

9-6. SPIN IMPARTED BY A SPIRAL PROJEGTOR

Suppose that the projector rails are set spirally so as to form a helix of constant pitch P.
As the rocket moves forward bearing surfaces (usually the fins) slide against the rails and
impart thespin. Let a, be the radius of the helix, i.e. the radius to the point of each rail which
is in contact with the bearing surface. The projectile will advance a distance 27P with every
revolution,t and its spin while on the rails is

vV

r=>p- | | (9-6:1)

Hence, if no other method of rotation is used, the spin between launch and burnt is,
by (4"4'4)a 1—

7= E—I)Q (%) erou), : (9-6-2)

If the fins are small the spin will only decrease very slowly.
It will often be convenient, however, to offset the fins at an angle A, chosen so that the
fins slide smoothly along the rails and remain in contact with them all along one surface.

If this is done then a
tanA, = ?f, (9-6-3)

where a, is the radius to the centre of pressure of each fin (see § 3-53). If P is not too small
A} = ay/P approximately, and then

_ 1 t 2 c\™ ~7(s",8) A4 g) - "'T(SO,S)} B
I

The same approximations that were made in § 9-5 may be applied to the right-hand side
of (9-6-4) where legitimate.

9-7. SPIN IMPARTED BY A COMBINATION OF JET AND FIN ROTATION

Since the equation satisfied by the spin is linear, the total spin due to a number of different
methods will be equal to the sum of the spins due to the separate methods, and may therefore
be obtained by combining the formulae of §§ 9-4 to 9-6.

There are, however, a few points which must be borne in mind when more than one
method of rotation is used.

1 IL.e. 2aP is the engineers’ pitch.
69-2
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The first point is that of the proper relation of the nozzle-inclination angle A, to the fin
angle Ap. Since the relative wind at the centre of pressure makes an angle of approximately
tan! (a,r/V) with the axis of the rocket, the fins will act as a brake on the spin unless

tan A, =% . (9-7°1)
14
If the spin is produced by means of the jet couple G and the aerodynamic couple I'; alone,
the total spin will be of the form r—1,A 7oA,
when A, and A are small. We must then have

A

Ap Aty
A, Y- ap’p’
It is in the early stages of flight that it is most important that the spin should be as large as
possible. Now 7;A; will usually be small in comparison with 7,A, at launch unless A, is
very small. Also, by (9-42-7) and (9-43-3),
Moo,

r,=—2"<V,

J COO
approximately, in the vicinity of launch. Hence (9-7-1) becomes

Ap_mgya,a
—F— T00%°F 9.7.2)
Ae - COO (

The second point concerns the projection of jet-rotated projectiles from spiral projectors.
If the nozzle inclination is too great the fins (or other bearing surfaces) may cease contact
with their corresponding rails and may foul the neighbouring rails or the supporting
brackets. This will not occur if

COO
tan Aeémooaep. (9-7-3)
It may, of course, be advantageous to diminish the torque on the projector by choosing
P and A, so that (9-7-3) is satisfied by only a very narrow margin.

9:8. PARAMETERS CONNECTED WITH ASYMMETRIES OF DESIGN AND FUNCTIONING

For the unrotated rocket there are two main ‘ tolerances’ ay, «, and for the rotated rocket
there are six, which cause the projectile to deviate from the trajectory of a perfect rocket,
and so produce a dispersion. Five of these tolerances, namely, the angles

gy Qpy  %pp Ay AR

(and their associated angles of orientation @g, ¢;, du, x> Pr), depend principally upon
asymmetries in the flow of the gas stream inside the rocket. These asymmetries may be due to:
(i) Malalinement, movement and distortion of the various metal components of the
projectile.
(ii) Malalinement, movement, distortion and uneven composition of the propellant.
(iii) The motion of the projectile in flight, e.g. acceleration along the trajectory, and the
angular velocity and acceleration about the centre of gravity.
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Of the five tolerances mentioned, the last, ap, which measures the inclination to the
rocket’s axis of the mean resultant gas velocity at the exit plane, is of most importance—at
any rate for the unrotated rocket. The chief factor producing this so-called ‘jet-malaline-
ment’ is thought to be faulty alinement of the axis of the nozzle system—the ‘mechanical
malalinement’. All five angles may be expected to vary during burning.

There is a sixth tolerance which has no effect on the unrotated rocket, but which may be
the most important of all for highly spun rockets, namely, the angle «, (and its associated
angle of orientation @) which measures the inclination to the rocket’s axis of its longitudinal
principal axis of inertia. This tolerance depends principally upon the mechanical mal-
alinements of the various components and not upon asymmetrical gas flow caused by such
malalinements. The stresses set up by the burning of the propellant may, of course, deform
the projectile and so cause variations in o, and @,. After the burning of the propellant has
ceased the effect of ‘inertial malalinement’ continues.

In order to assign numerical values to the different tolerance angles and so predict
the trajectory of the individual rocket, it is therefore necessary (i) to measure the mal-
alinements of the various components and so calculate the ‘mechanical’ malalinements
associated with the six angles a,, and (ii) to calculate from these mechanical malaline-
ments what are the actual values of the six angles «, and their associated angles of orientation
¢p (P=C,G,L, M, N,R).

In the case of the angle a, the effect of the gas flow may be unimportant so that the first
stage is sufficient. For the other five angles, however, the second stage cannot be ignored.
We conclude by discussing how these steps are to be carried out in practice.

The first task of measuring the mechanical malalinements of the components is one which,
although it presents no difficulties in theory, is by no means easy in practice. By spinning
and other experimental tests it is possible to obtain a considerable amount of numerical data
on the malalinements and other asymmetries of the complete projectile and its components.
It is, however, difficult to make these tests either consistent or reliable, and the calculation
of the mechanical malalinements from the experimental data obtained is laborious. One
difficulty, which is perhaps unimportant when the dispersion of a number of projectiles is
being considered, is that of choosing or defining in a consistent manner for each projectile
the axis with regard to which the measurements are made. In § 3-5 the rocket’s axis has been
defined in a perfectly precise way, but it is clear that its determination in practice from this
definition is impractical. '

Because of these and other difficulties the determination of the mechanical malalinements
for each individual rocket is clearly out of the question except for special experimental
trials. It is, however, seldom necessary to be able to predict the precise trajectory of an
individual projectile. What is of value is a knowledge of the mean point of impact of a group
of projectiles and the dispersion of the group about this point. It is clear that the mean point
may be assumed to be independent of the tolerances for any group of projectiles selected at
random from a batch coming from one factory. The dispersion of the group will, however,
depend upon the tolerances and may be expected to depend upon the dispersion of the
mechanical malalinements roughly in the same way as the deviation of the individual rocket
depends upon its own malalinements. For this reason it is of value to measure the standard
deviation of the mechanical malalinements of a randomly selected group of projectiles



566 R. A. RANKIN ON THE MATHEMATICAL THEORY

coming from the same factory. This information, although laborious to obtain, is of per-
manent value.

The second task of calculating the malalinements relevant in the theory from their mech-
anical counterparts has so far proved insurmountable. It is reasonable to suppose, to take
the case of the jet malalinement «,, for example, that a, will be proportional to the mechan-
ical malalinement a}, say, but the results of firings have demonstrated conclusively that the
ratio ap/ay is considerably greater than unity—at any rate for malalinements of the order of
those occurring in standard ammunition. In practice, therefore, it is customary to assume
some value for the factor ay/a; which will make the observed dispersion agree with that
calculated from the theory on the supposition of constant aj and ¢@,. This factor is then
used to predict the dispersion of new rockets of a similar type. This process is clearly
most unsatisfactory and detracts considerably from the value of the mathematical theory
as a means of prediction of the effect of tolerances. It is the author’s personal view, which
may not find acceptance in all quarters, that the theory is not in any way discredited thereby,
but that the fault lies in the lack of sufficient experimental information on the effect of
mechanical malalinements and weaknesses upon the gas flow.

10. SUMMARY

10-1. GENERAL

In this section we summarize in general terms some of the main features of rocket motion
as revealed by the mathematical theory. Unless it is stated to the contrary, these conclusions
refer to motion during the burning period. As remarked previously, it is during this period
that those disturbing factors] which tend to cause the projectile to deviate from the trajectory
of a perfect rocket fired in ideal circumstances have their greatest effect. For this reason, the
angular deviation of the projectile at the end of burning is the quantity which is of most
importance for the purpose of determining the future trajectory of the projectile.

We consider the motion under the headings of gravity, wind, dispersion and stability.

10-2. GRAVITY |

The force of gravity, acting in conjunction with the aerodynamic forces and couples,
chiefly the lift moment, causes the rocket to deviate from its direction of projection. This
deviation, which for the rotated rocket is not confined to the vertical plane, can be split
into two parts: (i) a deviation due to the action of gravity after launch, and (ii) a deviation
attributable to the conditions pertaining at the instant of launch from the projector. The
first part is calculated on the assumption that the projectile is perfectly launched, i.e. that
it leaves the projector with no angular deviation, yaw or cross-spin (rate of turn of axis).
The second part, which may be called the tip-off correction, takes into account the actual
launching conditions; it is the angular deviation due to the initial deviation, yaw and cross-
spin at launch, all other disturbing forces such as gravity being ignored. Normally, by far

1 It should be emphasized that the mechanical malalinement a, on which this ratio is based is the mal-
alinement which is measured when the projectile is in the cold state before firing. The experimental evidence
which is available is not very extensive, but, so far as it goes, confirms the view that the stresses set up during
burning may alter the alinement of the nozzle axis considerably.

T With the exception of gravity.
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the greater part of the tip-off correction (ii) is due to the cross-spin at launch, i.e. to the down-
wards angular velocity of the projectile as it tips off the projector. In shell ballistics (ii) is
generally negligible in comparison with (i), but this is not true for rockets, since, owing to the
low launching velocity, the initial cross-spin may be appreciable. One of the disadvantages
of rockets in comparison with shell is that the contribution from (ii) (and, to a lesser extent,
from (i)) may vary appreciably from projectile to projectile owing to variations in launching
velocity. ‘

The vertical component of the total deviation is called the ‘gravity drop’. The horizontal
component, which exists only for rotated projectiles, is called the drift. Whether the drift
is to the right or to the left depends upon the sense of the axial spin and upon the relative
magnitude of the two contributing parts. For convenience, we only consider projectiles
with a right-handed spin, i.e. clockwise as viewed from the rear.t For such projectiles, the
drift due to (i) is to the right or to the left according as the lift moment is destabilizing or
stabilizing. After burnt the deviation, which is then identical with the lateral drift experi-
enced by a shell, continues to build up.f On the other hand, the drift due to (ii) is to the
left and does not build up after burnt. The magnitude of the drift (ii) is generally greater
than the drift (i) at the end of burning. For this reason the lateral deviation at graze of spin-
stabilized rockets is generally to the left at low Q.E.’s and to the right at high 9.E.’s, while
medium-spun finned rockets generally drift slightly to the left.

10-3. WinD

The effect of wind upon the unrotated rocket is, at any rate in theory, simple. If the com-
ponent of the wind from right to left is wj, the component of the angular deviation of the
rocket at burnt will be £wy, into the wind in the horizontal plane. Here £ is a fixed constant
depending chiefly upon the launching velocity and the magnitude of the lift moment. In
a similar way the deviation in the vertical plane will be £w, sin «, where wy, is the component
of the wind from the front and « is the Q.E.

The behaviour of a rotating rocket in the presence of wind is not so simple. Thus the
deviation due to a cross-wind is not confined to the lateral plane but may possess an appreci-
able component in the vertical plane. In the same way the deviation due to a head wind
may possess a lateral component. Accordingly, two wind constants are required to describe
the effect of wind in place of one. For finned rockets with a medium rate of spin—i.e. not

“sufficient to contribute to stability but sufficient to reduce dispersion—the effect of the second
wind constant on the lateral deviation is small, but may be appreciable in the vertical plane.
Forrapidly spinningspin-stabilized rockets, however, the deviation in the plane at right angles
to the wind may be the greater.

10-4. DISPERSION

We consider here the effect of asymmetries of design and functioning upon the motion
from the point of view of the theory and without discussing the many practical difficulties
associated with the subject. Since such asymmetries are, in general, completely random from

T For left-handed spins the direction of the drift, as described in the following sentences, is reversed.
I The drift after burnt is not of quite the same character as the drift (i) during burning, since the former

depends equally upon the lift moment and the cross velocity force, while the latter is largely independent
of this force.
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projectile to projectile, when a group of projectiles is fired their points of impact or burst will
form a scattered pattern about the mean trajectory for a perfect projectile. Estimates of the
dispersion of this scatter provide a useful measure of the accuracy of the weapon, and are,
in theory, derivable from a knowledge of certain ‘ tolerances’ and their effect upon the motion
of the projectile. It appears likely that the two tolerances which can cause the greatest
deviations are malalinement of the direction of the thrust—jet malalinement—and mal-
alinement of the longitudinal principal axis of inertia of the rocket—inertial malalinement.

For the unrotated rocket the second of these has no effect. The dispersion due to the first
can be reduced by increasing the launching velocity or the size of fin. The first remedy is
not always practicable, and has not for some reason always proved successful when the
increase in velocity has been achieved by increasing the length of travel on the projector.
The second remedy has disadvantages in that it increases the sensitivity of the projectile to
irregularities in the wind structure; in addition, it makes the weapon awkward to handle
and to store.

By imparting rotation to the rocket the dispersion due to jet malalinement can, in theory,
be reduced to insignificant proportions.t The dispersion due to inertial malalinement, on
the other hand, increases as the spin is increased. Thus for most projectiles there will be an
optimum spin for which the dispersion will be least. In the present state of ignorance
regarding the relation between mechanical tolerances and their effect upon the gas flow,
the determination of this optimum can only be accomplished by experimental means.

10-5. STABILITY

The problem of determining when a rocket will be stable has a number of features which
distinguish it from the similar problem for shell. The true stability conditions for a rocket
depend, as in the case of shell, not only upon the spin and lift moment, but also upon the
other aerodynamic forces and couples such as the Magnus couple due to cross-velocity and
the couple due to cross-spin. During burning, however, they depend, in addition, upon the
acceleration and the damping effect of the jet. These two additional factors have, in general,
a stabilizing effect upon the motion, so that a rocket may start to become unstable only after
burning has ceased.

It is always possible to stabilize the projectile by providing large enough fins at the rear
end, but this method often has disadvantages, e.g. too great sensitivity to gusts and awkward-
ness of shape. If fins are dispensed with it may be possible to achieve stability by imparting
a sufficient amount of axial spin by some means. This is not, however, always so simple,
since, owing to the necessity of providing a combustion chamber, the length-diameter ratio
of the rocket is generally fairly high and the spin required, which depends upon this ratio,
may not be realizable in practice, or may produce stresses which are great enough to deform
the projectile. For this reason some compromise between ‘fin’ and ‘spin’ stability may be
unavoidable.

+ The assumption is made here that the jet malalinement is not appreciably affected by rotation; no
information is available on this point. Some of the tolerances connected with the gas flow produce deviations
which increase with the spin, so that the dispersion associated with irregularities in the gas flow cannot be

reduced indefinitely by increasing the spin. It is, in fact, possible that for certain projectiles rotation may
have no beneficial effect upon this dispersion.
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10-6. CONCLUSION

In the preceding sections the mathematical theory of the motion of a rocket has been
worked out in detail. By means of this theory it is possible to determine not only the trajectory
during the burning period—i.e. the path of the centre of gravity—but also the yawing motion
of the projectile about its centre of gravity. '

The theory rests, necessarily, on certain assumptions, and it may be of value to restate
those which are of most importance; the reasons for making these assumptions need not be
repeated here.

In the first place, it has been assumed that the angular deviation of the trajectory remains
small during the burning period. This assumption causes considerable simplification in the
theory but means that it is not applicable to rockets with a long burning time.{ For this
reason, it would be of great interest to develop a theory independent of this assumption, but
it is not to be expected that this will be possible without adding greatly to the complication
of the methods employed.

Secondly, it has been assumed that the rocket is fired from the ground, or else that an
appreciable part of the trajectory during the burning period is traversed at a subsonic
velocity. Because of this it is justifiable to make certain assumptions regarding the form of the
aerodynamic coeflicients. These assumptions cannot, however, be expected to remain valid
for rockets fired from aircraft where the launching velocity may be in the transonic region.
It would seem desirable to extend the theory in order to cater for this type of motion, which is
becoming of increasing importance. There are no inherent difficulties in making such an
extension; however, until a great deal more is known about the magnitude and variation
of the various aerodynamic cross-forces and couples (in particular, the Magnus couple),
it seems scarcely advisable to elaborate the theory further.

Thirdly, it has been assumed that the propellant is not liquid. When this is not so, serious
difficulties arise owing to the effects of rotation and acceleration. Even in the simpler case
of liquid-filled shell the problem has not been solved satisfactorily, and considerable dis-
crepancies occur between theory and practice. Itis, of course, possible that the destabilizing
effects of a moving liquid can be reduced or even eliminated by confining the liquid in such
a way that these effects are severely restricted.

Finally, there is a great need for experimental work of a quantitative nature in every part
of the theory. Of the large number of parameters, whose numerical values are required in
order that the results may be applied in practice, only very few are known with any accuracy,
and many are not even known to within a factor of ten. For example, to mention only one
case, some of the most interesting predictions of the theory regarding stability cannot be
tested, since the necessary information regarding the Magnus couple and cross-spin damping
couple is not available.

APPENDIX A. TABLES OF FRESNEL FUNCTIONS

Tables are given of the Fresnel functions 4(x), B(x) and of the subsidiary functions

ﬂl‘x’ Ay(%), Z(x), Z(x), A*(x), B*().

t It is always possible, of course, to split the trajectory up into arcs in each of which the assumption is
valid.
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From these the functions
E(u,v), E*(u,v), G(u,v), F(u,v), H(u,v),

which are introduced in § 6-4, may be calculated with the help of the ordinary trigono-
metrical functions. The wind function K(x,v) defined by (6-84-2) requires, in addition, the
sine and cosine integrals. These integrals may be obtained most easily from the Work
Projects Administration’s tables (1940).

The definitions of the functions mentioned at the beginning of the appendix are
repeated :

A(x) = 7 2f —dm tl__!_d:z {4 —S(x)} cos 4mx?— {§ — C(x)} sin fmx?, (A.1)
x) = ;r—:/-éfo e im f j; +—8(x)}sin §mx?+ {3 — C(x)} cos fm a2, (A. 2)
4y(x) = -~ A(x), | (A.3)
Z(x) = f :A (w) du (A. 4)
— Z,(%) +logx, | (A. 5)
® du
() = [ "4 (A. 6)
B*(x) — f:B(u) d. (A.7)

Description of the tables

In table 1 the functions A(x), B(x) and Z(x) are tabulated at intervals of 0-01 from
x = 000 to x = 1-00 to four places of decimals. Interpolation may be carried out by using
the first differences only.

In table 2 the functions A(x), 4,(x), B(x), Z(x), Z,(x) and 1/mx are tabulated at varying
intervals from x = 1-00 to x¥ = 15-0. Interpolation may be carried out by using the first
differences for all these functions with the exception of Z(x), when x exceeds 2. When x is
less than two, second differences are occasionally necessary, and Bessel’s central difference
formula may be employed.

For the function Z(x) both first and second differences are given throughout. When tables
of Napierian logarithms are available an alternative method of calculating Z(x) is to use the
table of the slowly varying function Z,(x) in conjunction with the formula (A.5). This
method is more convenient when interpolation is necessary.

It will be observed that there is little difference between the entries for A(x) and 1/mx
in the latter part of the table. It was thought to be advantageous, however, to tabulate
these functions separately so that the last figure might be correct in every case. For the same
reason, the function 4, (#) is given at each point although it can easily be evaluated from the
values of A(x) and 1/mx by use of (A. 3).

In tables 3 and 4 the functions 4*(x) and B*(x) are tabulated at intervals of 0-1 from 0+0

to 5:0. In the region 0-0 to 1-0 it may be more convenient when interpolating to use the
tables of A*(x) +4log x and B*(x) +11log x.



0-00
0-01
0-02
0-03

0-05

0-06
0-07
0-08
0-09
0-10

0-11
0-12
0-13
0-14
0-15

0-16
0-17
0-18
0-19
0-20

0-21
0-22
0-23
0-24
0-25

0-26
0-27
0-28
0-29
0-30

0-31
0-32
0-33
0-34
0-35

0-36
0-37
0-38
0-39
0-40

0-41
0-42
0-43
0-44
0-45

0-46
0-47
0-48
0-49
0-50

OF THE MOTION OF ROTATED AND UNROTATED ROCKETS 571

A(x)

0-5000
0-4999
0-4997
0-4993
0-4988
0-4982
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0-4965
0-4955
0-4944
0-4931
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0-4904
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0-3752
0-3674

0-3598
0-3523
0-3449
0-3377
0-3306

0-3237
0-3169
0-3102
0-3036
0-2972

0-2910
0-2848
0-2788
0-2729
0-2671

0-2614
0-2558
0-2504
0-2451
0-2398

0-2347
0-2297
0-2248
0-2200
0-2153

0-2108
0-2063
0-2019
0-1976
0-1934

0-1892
0-1852
0-1813
0-1774
0-1736

Z(x)

0-0000
0-0157
0-0314
0-0471
0-0628
0-0784

0-0941
0-1097
0-1253
0-1408
0-1563

0-1718
0-1872
0-2026
0-2180
0-2332

0-2485
0-2636
0-2787
0-2938
0-3088

0-3237
0-3386
0-3533

0-3681.

0-3827

0-3973
0-4118
0-4262
0-4405
0-4548

0-4690
0-4831
0-4971
0-5110
0-5249

0-5387
0-5524
0-5660
0-5795
0-5929

0-6063
0-6196
0-6328
0-6459
0-6589

0-6718
0-6846
0-6974
0-7101
0-7227

TABLE 1

AZ

+
157
157
157
157
156
157

156
156
155
155
155

154

154
152
153

151
151
151
150
149

149
147
148
146
146

145
144
143
143
142

141
140
139
139
138

137
136
135
134
134

133
132
131
130
129

128
128
127
126

X

0-50
0-51
0-52
0-53
0-54
0-55

0-56
0-57
0-58
0-59
0-60

0-61
0-62
0-63
0-64
0-65

0-66
0-67
0-68
0-69
0-70

071
0-72
0-73
0-74
0-75

0-76
0-77
0-78
0-79
0-80

0-81
0-82
0-83
0-84
0-85

0-86
0-87
0-88
0-89
0-90

0-91
0-92
0-93
0-94
0-95

0-96
0-97
0-98
0-99
1-00

A(x)

0-3992
0-3965
0-3938
0-3910
0-3883
0-3856

0-3829
0-3803
0-3776
0-3749
0-3723

0-3696
0-3670
0-3644
0-3618
0-3592

0-3567
0-3541
0-3516
0-3491
0-3466

0-3441
0-3416
0-3391
0-3367
0-3343

0-3319
0-3295
0-3271
0-3248
0-3225

0-3202
0-3179
0-3156
0-3133
0-3111

0-3089
0-3067
0-3045
0-3024
0-3002

0-2981
0-2960
0-2939
0-2919
0-2898

0-2878
0-2858
0-2838
0-2818
0-2799

B(x)

0-1736
0-1699
0-1663
0-1628
0-1594
0-1560

0-1527
0-1495
0-1463
0-1432
0-1402

0-1373
0-1354
0-1316
0-1288
0-1261

0-1235
0-1209
0-1184
0-1159
0-1135

0-1112
0-1089
0-1066
0-1044
0-1023

0-1002
0-0981
0-0961
0:0941
0-0922

0-0904
0-0885
0-0867
0-0850
0-0833

0-0816
0-0800
0-0784
0-0768
0-0753

0-0738
0-0723
0-0709
0-0695
0-0681

0-0668
0-0655
0-0642
0-0629
0-0617

Z(x)

0-7227
0-7352
0-7476
0-7599
0-7721
0-7843

0-7964
0-8083
0-8203
0-8321
0-8438

0-8555
0-8670
0-8785
0-8899
0-9013

0-9125
0-9237
0-9348
0-9458
0-9567

0-9675
0-9783
0-9890
0-9996
1-0102

1-0206
1-0310
1-0413
1-0516
1-0617

1-0718
1-0818
1-0918
1-1017
1-1115

1-1212
1-1309
1-1405
1-1500
1-1595

1-1689
1-1782
1-1875
1-1967
1-2058

1-2149
1-2239
1-3329
1-2417
1-2505

70-2

AZ

121

119
120
118

117

115
115
114
114
112

112
111
110
109
108

108
107
106
106
104

104
103
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TABLE 2
x A(x) Ad B(x) AB  A(x) A4, Z(x) AZ A2Z  Z(x) AZ, ;Tl; A
100 02799 = 00617 . 00384 L 12505 L. 15 12505 . 03183 .=
105 02704 9 56 57 432 56 151

0-0561 0-0327 1-2937 14 12449 0-3032
110 02614 gg 0-0510 Z}S 0-0280 ig 13355 i(l)i 14 1-2402 ig 0-2894 igg
115 02528 S0 00464 10 00240 13759 301 13 1:2362 0-2768
120 0-2446 0-0423 0-0207 1-4150 13 12327 0-2653

125 02368 'S 00386 5! 00178 22  1.4528 ggg 12 12297 30 2546 197

130 0-2205 0-0353 0-0154 1-4894 11 12271 0-2449

135 02225 3‘7) 0-0323 3‘7) 00133 ff; 15249 gii 11 12248 gg 0-2358 gi
140 02158 Of 00206 20 00116 11 15593 55 10 12228 §0 02274 SF
145 02004 O¢ 00272 22 o101 15 1s9zr 350 10 le2nl L 02195 [
150  0-2034 0-0250 0-0088 1-6251 10 1-2196 0-2122

15 02034 0-0250 0-0088 1-6251 37 12196 0-2122

16 01922 i(l)g 0-0213 gz 0-0067 “fé 16872 ggé 33 12172 % 0-1989 ﬁ?
17 o1s20 92 oo1s2 3L 00052 17 1760 222 31 12153 [ o812 137
18 017121 8 oows6 20 o004t 't 1sorr 27 28 12139 17 01768 92
19 01643 S& 00135 2L 00032 § 18546 29 25 12128 ' 01675 o
20 01566 . O0OLIT 15 00026 § 19050 07 23 12119 7 01592 1o
21 01495 0-0103 0-0021 1-9531 92 12112 0-1516

29 01430 gg 0009 ¥ 00017 F 19990 9 19 1206 & o140 gg
23 o130 S0 oo0079 1§ ooora 3 20s30 530 18 12101 % ol3s¢ 3
24 01315 95 goor0 9 ooour 3 2oss2 {22 17 12097 § 01326 o
25 01264 oL 00063 7 00009 2 21257 so0 15 12094 5 o0l2r3 o
26 01217 0-0056 0-0008 21647 15 1-2092 0-1224

27 01173 i; 0-0050 g 0-0006 ? 2-2022 ggg 13 1.2089 g 01179 o
28 01181 52 00045 ° 00005 § 22384 302 13 12087 3 01137 o
29 01093 35 o004l 4 00005 9 22733 328 11 12086 ] 0098 )
30 01057 S0 00037 % o000+ ] 23011 333 11 12085 | o0l061 3
31 01024 g, 00033 , 00003 23398 o 11 12084 01027
32 00992 52 00030 5 00003 ¢ 23714 3% 9 12083 | 00995 3o
33 00962 S0 00028 2 00002 . 24021 500 9 12082 | 00965 50
34 00034 25 00025 5 00002 O 24319 9% 9 12081 7 00936 >
35 00008 20 00028 2 00002 ( 24608 500 8 12080 o 00909
3.6 00883 0-0022 0-0002 24889 7 12080 0-0884

37 00850 25 000200 2 00001 . 25163 S5 8 12079 o 00860 oo
38 00836 25 00018 2 00001 o 25429 200 7 12079 o 00838 52
39 00815 2t 00017 ] 00001 O 25688 200 6 12079 § 00816 20
£0 00795 20 00016 1 00001 § 2504l 257 6 12078 [ 0079 50
41 00776 o 00015 ;00001 26188 .. 6 12078 00776 o
+2  oors1 1 oooie 1 00001 O 26420 22l 6 1208 0 oorss (o
+3 o090 T 00013 1 o000 J 2eeee 20 5 1208 O oor40 |7
«4 00123 T o002 1 o001 § o 2eses 30 6 120 | o012 gf
«5 00707 % gomr 1 oooor § 278 B 4 120m [ 00707 p
46 00602 . 00010 , 00000 . 2738 . 5 12077 00692
+7 00677 % o000 O 00000 § 2753 35 5 120 (00677 1}
48 00663 1% 00009 & 00000 ¢ 27763 00 4 12077 o 00663 3
£9 006190 1% 00000 9 00000 § 27969 200 4 1207 o 00650 13
50  0-0636 0-0008 0-0000 2.8171 4 12077 0-0637
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x A(x)

0-0636
0-0624
0-0612
0-0600
0-0589
0-0579

0-0568
0-0558
0-0549
0-0539
0-0530

SOPUS A DO~DS

0-0522
0-0513
0-0505
0-0497
0-0490

0-0482
0-0475
0-0468
0-0461
0-0455

0-0455
0-0442
0-0430
0-0419
0-0408
0-0398

0-0388
0-0379
0-0370
0-0362
0-0354

0-0346
0-0339
0-0332
0-0325
10-0 0-0318

POOL CPPPP PIIIIT TSP DPPPP SUAAQP qaAqAAAXR

DD SO SOHARNNS SOadB Gk 0oL

10-0 0-0318
10-5 0-0303
11-0 0-0289
11-5 0-0277
12:0 0-0265
12-5 0-0255

13-0 0-0245
13-5 0-0236
14-0 0-0227
14-5 0-0220
15-0 0-0212

For x greater than 15,

TABLE 2 (continued)

A4 B
~ 00008
ig 0-0008
1 0:0007
2 00007
1o 00006
19 00006
0-0006

13 0-0005
0 00005
o 0:0005
S 0:0005
o  0:0004
Y 00004
s 0:0004
3 00004
7 0:0004
. 0:0004
T 00003
T 00003
T 00003
0-0003
0-0003

}g 0-0003
2 00003
1 00002
1o 00002
o 00002
g 00002
o 00002
a  0-0002
s 0:0001
g 0-0001
. 0-0001
T 00001
T 00001
T 0:0001
0-0001
0-0001

ii 0-0001
15 0:0001
15 0:0000
1o 0:0000
10 00000
o 00000
o 0:0000
2 00000
2 0:0000
0-0000

Z(x)

2-8171
2-8369
2-8563
2-8753
2-8940
2-9124

2-9304
2-9481
2-9655
2-9826
2-9994

3-0159
3-0321
3-0481
3-0639
3-0794

3-0947
3-1097
3-1245
3-1391
3-1535

3-1535
3-1817
3-2091
3-2357
3-2617
3-2870

3-3117
3-3358
3-3593
3-3823
3-4048

3-4268
3-4483
3-4693
3-4899
3-5101

3-5101
3-5589
3-6054
3-6499
3-6925
3-7333

37725
3-8102
3-8466
3-8817
3-9156

AZ AZ

153

150
148
146
144

282
274

266
260

253
247

241
235
230
225
220

215
210
206
202

488
465
445
426
408
392

377
364
351
339

[ SN Sttty & ST ® [ O ON N UL [CRVLN O URVL) Wwwww hkwwbhl-hﬁkl

Zy(x)

1-2077
1-2077
1-2077
1-:2076
1-2076
1-2076

1-2076
1-2076
1-2076
1-:2076
1-2076

1-:2076
1-2076
1-:2076
1-2076
1-:2076

1-2076

1-:2076
1-2076
1-2076
1-2076

1-2076
1-2076
1-2076
1-2076
1-2076
12076

1-2076
1-2076
1-2076
1-2076
1-2076

1-2076
1-:2076
1-2076
1-2076
1-2076

1-2076
1-2076
1-2076
1-2076
1-:2076
1-2075

1-2075
1-:2075
1-2075
1-2075
1-2075

A(x) ==%¢ , B(x)=0, Z(x)=1-2075+1log ,
Z,( o) = 1-207546366.

- 0-0490

|
>

0-0637
0-0624
0-0612
0-0601
0-0589
0-0579

ot bt ot et o
— O b0 = bo oo |

0-0568
0-0558
0-0549
0-0540
0-0531

0-0522 -
0-0513
0-0505
0-0497

0-0482
0-0475
0-0468
0-0461
0-0455

-
TN @ ~J 0 W © COCOOO

0-0455
0-0442
0-0430 11
0-0419 11
0-0408
0-0398

0-0388 -
0-0379
0-0370
0-0362
0-0354

0-0346
0-0339
0-0332
0-0325
0-0318

0-0318 15
0-0303 14
0-0289
0-0277
0-0265
0-0255 10

0-0245
0-0236
0-0227
0-0220
0-0212

correct to four figures.



T %

~O090 900009
[e=NoNe RN Ner) QU W ~O

574 R. A. RANKIN ON THE MATHEMATICAL THEORY

3370
1888
1267
922
704

554
447
367
306
258

x A*(x)

0-2821
0-2601
0-2412
0-2247
- 0-2102

[ T el

0-1974
0-1861
0-1759
0-1668
0-1586

S©oooId b oo~

0-1511
0-1443
0-1381
0-1324
0-1271

0-1223
0-1178
0-1136
0-1097
0-1060

Oy O O N I Y Ny Y Y I Y o]

S©EaS Stk oo~

For x>50, A*(x) =%1;, B*(x) = }B(x) correct to four figures.

done as follows.

A24*

1482

621
345
218

150
107

AA*

220
189
165
145
128

B*(x)
e 0}
0-5975
0-3393
0-2177
0-1482
0-1048

0-0762
0-0567
0-0430
0-0331
0-0259

A24*

Whwww Tk TSI 3 O

AB*

2582
1216

B*(x)

0-0206
0-0165
0-0134
0-0110
0-0091

0-0077
0-0065
0-:0055
0-0047
0-0041

0-0035
0-0031
0-0027
0-0024
0-0021

0-0019
0-0017
0-0015
0-0014
0-0012

DD = DD DO bO QO W [=rR=rNe

AZB* A*(x)+ 1 log x

0-1355
0-1391
0-1487
0-1626
0-1798
0-1991

0-2199
0-2415
0-2636
0-2858
0-3079

AB* A?B*

12
10

O DO O D [S RSN

x®

HH e B wwwe
S©HUS S Lo

A

36
96
139
172
193
208

216
221
222
221

Method of calculation of the tables

The formulae (6-4+5) provide a direct method of calculating A(x) and B(x) for any value
of x. This method was not employed, however, in the construction of the tables which was

A2

A*(x)

0-1026
0-0994
0-0964
0-0936
0-0909

0-0884
0-0860
0-0837
0-0816
0-0796

0-0776
0-0758
0-0740
0-0723
0-0707

0-0692
0-0677
0-0663
0-0650
0-0637

B*(x)+4log x
—0-6499
—0-5538
—0-4654
—0-3843
—0-3099
—0-2418
—0-1792
—0-1216
—0-0686
—0-0195
+0-0259

AA*  B*(x)
=~ 00011
gg 0-0010
S 0:0009
e 0:0009
2T 00008

0-0007
gg 0-0007
o 0:0006
00006
o 0:0005

0-0005
15 00005
17 0-0004
e 0:0004
1 00004

0-0003
}i 0-0003
1 00003
13 00003

0-0003

A

961
884
811
744
681
626

576
530
491
454

Table1. Values correct to seven places of decimals of C(x) and S(x) for ¥ = 0,0-1,0-2,...,1-0,
which had been calculated from the series expansions, were used to obtain A(x) and B(x)
at each of these eleven points with the help of (64-4). From these the values of 4(x) and B(x)
at the ten intermediate points x = 005, 0-15, ..., 0-95 were derived by means of the Gregory-
Newton interpolation formula by using differences up to the sixth order so as to obtain
accuracy to five places of decimals. The differences between the values at the 21 points
x = 0-00, 0-05, 0-10, ..., 1-00 were then sufficiently smooth for the values of 4(x) and B(x)
to be obtained correct to four figures at intervals of 0-01 by use of Bessel’s formula.



OF THE MOTION OF ROTATED AND UNROTATED ROCKETS 575

Table 2. (a) 1:05<x<1+9. The values of 4(x) and B(x) in this range have been taken
from the tables given by Lash Miller and Gordon (1931), and the last figure may not be
true in some cases. The function 4,(x), Z(x) and Z,(x) have been calculated from them,
so that the same doubt attaches to the last figure of 4,(x), and, to a lesser extent, to the
last figure of Z(x) and Z, (x).

(b) 2-0<x<15-0. All the values in this range have been recalculated. For the functions
A(x), A,(x) and B(x), this was done by means of the asymptotic formulae

Alx) = 0p—0y+0,— ... +(—1)"(09,—Ry,),
Ay(x) = 0p—04+ ... —(—1)"(02,—Ry,),
B(x) =”1‘;”3+”3— A+ (=1)"(03,41— Ropir)s

where J2 D(n+1) (dnx2)-n-t (A. 8)
and the ‘remainder’ R, is given by
—%mc?t
mf 1+t2dt (A. 9)
. [ 1 1 3 1.3.....(2n—1)
Orexampe 0‘0——‘7—1_’;;, O—IT%?x-g’ Uz—m,..., 0n= ,”n+lx2n+l

It is clear from (A. 8,9) that the remainder satisfies the inequalities
0<R,<0,, O<R,<0,,, (A. 10)
These inequalities, however, are insufficient to determine A(x) and B(x) correctly to four
figures of decimals when the argument lies between 2 and 3.
Accordingly, use was made of the following artifice (cf. Rankin 19455). For positive ¢,
1 1 1
Z”‘O*’) STreSaw
and it follows from (A. 8, 9) that
Tpi1— 4(0,+0p40) SR, <h0y 4. (A.11)
This inequality usually confines the error to narrower bounds than are obtained from
(A.10). By this means it is possible to use the asymptotic formulae to obtain the values of
A(x) and B(x) for values of x from 2 onwards.
The functions Z(x) and Z,(x) were calculated from the asymptotic formula

Z(x) =log x+2Z,(x)

1.3 1.3.5.7 1.3.5.7.9.
— log x+}(y-+log 2m) + UELTS

4yt 8mixd 1275x12
By means of an artifice similar to that described above, this formula can be applied to give
results accurate to four figures of decimals for x>2. The y appearing in the formula is

Euler’s constant, and L(y+log 27) = 1-20754637,
approximately.

Tables 3 and 4. (a) 0<x<1-0. The values of A*(x) and B*(x) in this range have been
calculated from the formulae (6-82-4, 5).

(6) 1-1<x<1-9. The values in this range have been calculated by numerical integration
from the values of 4(x) and B(x).

(¢) 2:0<x<<5'0. For these values of the argument the asymptotic formulae (6-82:6,7)
have been used together with the artifice described above.
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Other tables. There are two definitions in use of the Fresnel integrals C and S. (For
tables of the functions defined by (6-4-2) see Edwards (1922, p. 332), Preston (1928, P- 296)
or Jahnke & Emde (1938, p. 34).) According to the alternative definition

¢ = s 8@ = fo(ﬁglf;%dt. \‘

These definitions agree with the formulae (6-4:1,2) when z = §mx?. Tables, to four places
of decimals, may be found in Jahnke & Emde (1938, p. 35), and, to a greater number of
places, in Watson (1922) and in the British Association Report (1926).

1 | 1
I K+H), - B() =77 (K—H)

see Lash Miller & Gordon (1931, p. 2873). Part of the table given there is included in
Rankin (1943 ). |

The tables of C(x) and S(x) in Edwards (1922), Preston (1928) and Jahnke & Emde
(1938) are to four places of decimals at intervals of 0-1. A list of errors occurring in the
latter is given in Mathematical tables and aids to computation (1945, pp. 395, 398).

The table of A(x) and B(x) given by Lash Miller & Gordon (1931) proceeds in steps of
0-05 from 0 to 1-50, in steps of 0-1 from 1-5 to 85, and in steps of 0-5 from 8:5 to 15-0. The
values given are to four places of decimals, and the last figure is not always true.
 The functions rr (x) and 1j () tabulated by Rosser, Newton & Gross (1947) are con-
nected with the functions 4(x) and B(x) by the relations

AW =@n)7her (3, B(x) = (2m) 7t (37x2).

For the functions A(x) =

APPENDIX B. NUMERICAL EXAMPLES AND EXPLANATION OF FIGURES 6 TO 15

The formulae of § 6 have been applied to various spin- and fin-stabilized rockets rotated
by means of inclined nozzles. In order to present a full picture of the behaviour of such
a rocket during burning, detailed calculations of the angular deviation, yaw, etc., have
been made for a number of instants during burning, and curves have been drawn from the
figures obtained. These calculations have, for convenience, been based on a fictitious but
representative rocket whose characteristics have been chosen in order to make the numerical
work as simple as possible. The relevant parameters chosen for this rocket are:

Time of burning t, = lsec.
Launching velocity 1, = 150ft./sec.
All burnt velocity ; 7, = 1500 ft./sec.
Constant acceleration f = 1500ft./sec.?
Spin-velocity ratio f = 0-025

y=1

Destabilizing moment coefficient 12 = 225 10° 4ft.~2
From these figures we derive
A, = 0-045, 1, =0-005, p = 0-02ft.~L.

The stablhty factor is 2-778. Values of the mass, moments of inertia, length, number of
nozzles, nozzle inclinations, etc., are not given, since they do not affect the values of the
deviation and yaw except as constant multiplying factors. Any reasonable values which are
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10
0-8f-
12
12
14
0-6

0-4

0-4-
0-2
T2
0-2f— |
0-2 0
14 12
‘ L
0 02 0-2
Freure 6. Angular deviation due to an Figure 7. Yaw due to an initial yaw of 1°.
initial yaw of 1°. (Units = degrees.) (Units = degrees.)

Figures 6, 7. Initial yaw. Perfect launch except for an initial yaw of 1° has been assumed. This
means that the rocket is launched with its nose pointing 1° above the trajectory (E, = ¢, = 1°). The
deviations and yaws due to initial yaws of other magnitudes and orientations can be deduced by mag-
nifying or diminishing in the required ratio, and orientation through the necessary angle.

Vor. 241. A. 71
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| |

| | RENM
010 008 0:06 0-01U0:02.
0-02 0-08

0-04
Ficure 8. Angular deviation due to an Ficure 9. Yaw due to an initial rate
initial rate of turn of 1° per sec. of turn of 1° per sec.
(Units = degrees.) (Units = degrees.)

Figures 8, 9. Initial rate of turn (cross-spin). An initial rate of turn of the axis of 1°/sec. downwards
in the vertical plane has been taken (i.e. ), = 1°/sec.). It will be observed that thereis a considerable
deviation to the left. The deviations and yaws corresponding to other rates of turn can be found as
described above.

04 02 0 02 04 06
[ ! I I

02f-
12
0-4f~

0-6—

Ficure 10. Angular deviation due to gravity. Ficure 11. Yaw due to gravity.

(Perfect launch is assumed. Q.. 0°. Multiply by cos Q.E. for other Q.E.’s.)
(Units = degrees.)

Figures 10, 11. Gravity. The figure shows the angular deviation and yaw due to gravity for zero
0.E. Perfect launch is assumed so that there is a drift to the right. When the tip-off components are
known their effect can be determined from figures 6 to 9. It is clear from figure 8 that the final
deviation at burnt will be to the left instead of to the right if the initial tip-off angular velocity is
appreciable. The deviation and yaw at a Q.E. & may be found from the figures by multiplication
by cos a.
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consistent with the figures given may be chosen. The following values are quoted as an
indication of the type of weapon to which the above figures could apply:

Length = 3% ft. approx. Calibre = 71in. approx.
Mass (initial) My, = 1001b. Mass (final) m, = 781b.
Transverse M.I.  4,, = 1001b.ft.2 Axial M.I1. Cyo = 51b.ft.2
Nozzle inclination =15° Nozzle ring radius = 2:241in.
Projector length = 7}t Gas velocity W = 6250 ft./sec.

ml/A = 1-8 ft.~! approx.

0-02 0 0-02
! 9 I

— direction
of wind

1 0-02

—0-04

0-04 —10-02

010 ‘08 0-06 004 002 0 0-02

10 4
—0-02
0-06 12 |
12
14 0-04
. O. .
0-08- —0-08
Ficure 12. Angular deviation due to Ficurk 13. Yaw due to a constant cross-wind.

a constant cross-wind.
(Wind speed 1 ft./sec. from left to right.)
(Units = degrees.)

Figures 12, 13. Wind. The figures show the angular deviation and yaw due to a cross-wind blowing
from left to right across the line of fire, and of speed 1 ft./sec. The deviations and yaws corresponding
to other magnitudes and directions of the wind can be found from the figure by a suitable magni-
fication and orientation (see §6-83). :

Calculations of the angular deviation and yaw due to various disturbing forces and initial
conditions, and based upon the six independent parameters V, V,, £, 7, 7? and f, were made
at 28 different points during burning, corresponding to velocities of 150, 200, 250, ...,
1500 ft./sec.

Curves of the types described in § 3-31 have been drawn from the values calculated, and
are given in figures 6 to 15, the points corresponding to each 200 ft./sec. of velocity being

marked.
71-2
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-2
0

—10-6
0-01—

—0-4
0-02|—

—10-2
0-03—~

* .
0-04— 04 02 &0
Ficure 14. Angular deviation due to a displace- Ficure 15. Angular deviation due to

ment of the principal longitudinal axis of inertia. a malalinement of the thrust.

Displacement = a;x 103 radian downwards
(forward end).

Figure 14. Displacement of the longitudinal principal axis of inertia. The figure shows the angular
deviation due to a displacement «; = 103 radian downwards in the vertical plane at launch. Perfect
launch is assumed. No curve for the yaw is given since a far greater number of points than the 28
used would be required to record accurately the subsidiary high-frequency oscillations which are
imposed upon the two normal modes of precession.

Figure 15. Malalined thrust. The figure shows the angular deviation due to a thrust malalinement
op = 1073 radian downwards in the vertical plane at launch when m/ = Ay. When this relation does
not hold, the co-ordinates should be multiplied by mi/Ay. No curve for the yaw is given for the same
reason as mentioned above.
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APPENDIX C. COMPARATIVE LIST OF SYMBOLS USED BY VARIOUS AUTHORS

Kelley, McShane
& Reno 19497

P
d
4K,
8Ky
16Ky
N
16K,
8K,,
16K,
32Ky
4K,
16K,

1]

n
[7]
)

4
pds,
pd’s,
pd’sy

pPdts,sy

Nielsen &
Synge (1946)

p
2a

p
2r

JetSe

<

| ©= < a8 >

| == |§

l

2

Fowler et al. (1920)
Text-book of A.A.

gunnery (1925)

Rankin
(present paper)

p
2a

k/pa?
kylpa®
—kylpat
— K [pa®
—kydy/pat
—kd, [pa®
K dypa*
Ky dslpa®
R,[pa®
L'4/pa®

A=B

<l O3

r
CrlA = 2pr
—VE
Ve
i(dg/at)
)

o

2ma,

2m(ay+ o, +@[2p)
2m(oy — o —w@/[2f8)

m2S, (B} V2

remarks

see note 1

see note 1

see note 1

see note 2

Note 1. Owing to the different systems of axes used the quantities §, 9, and { in columns 1 and 2 are not
strictly equal to the quantities — VE, ¢(d{/dt) and E in column 4. They differ, however, only in factors of

unit modulus. ,
Note 2. This equivalence is approximate.

APPENDIX D. INDEX OF SYMBOLS

The index gives the number of the section, subsection or formula where the symbol is defined. Symbols
occurring in only one subsection are not listed in every case. In § 3-24 a list of those symbols which can carry
the suffices 00, 0 and 1 in order to denote values at ignition, launch and burnt is given. Names of points in
figure 3 are not given here. A dagger f denotes that the suffix P stands for any one of C, G, L, M, N, R.

A(w)

24, 3-221
(6:4-4, 5)
(6:82-1)
(6+4-6)
2-4
3-221
3-53

9-41

9-41
(6+4-20)
3-63, 6:10

Ttalic letters

B
B(w)
B*(u)
b

b ~
bl()u, v)
Top(v)
c
Cix
C(u)

2-2 (body) ; 2-4, 3-221 (M.L.)
(6-4-4, 5)

(6:82-1)

24

941

(6:4-21)

3-63, 610

24, 3-221
(6:822)
(6-4-2)

71-3
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é’;k &> N
& (s), &5 ()
g(u, v)

H

H(u, ”)

h

hg

hos By
h,

i

J(ts £)

K, K,, K,

K(u, v)
K\ (u, 5), Ky(u, 9)
k

k
kl
kil

(6-4-3)
24
(9-2-4)

(3-3-13)
(6-4-4)
(6:82°1)
(3-513-3)
(3-514-3)
(3-515-3)
(3-516-3)

(42:12)
(6-4-22)
(6-4-10)
(6-4-11)
(6-4-1)
2-71828...
(6-82-3)
(6-82-2)

(3-51-1)

(4-2-13)

(4-2-14)

3-511 (components of F)
(3-511-1)

(6-4-13)

3-23

(3-511-1), (3-517-11)
(4-2-1)

(3-51-1)

(3-511-2)

3-511 (components of G)
(6-3-4)

35
(3-511-2), (3-517-11)
(8:3-3)
(8-2-4)

see eta
(6-4-14)

24
(2-4-3),'3-23
6-81

(6-85-4)

V(=1)
(7-32-8)

constants
(6:84-2)
8-41

25, 3-214
(3-513-3)
(3-514-3)
(3-518-3)

Fy

Ko

ke
kl(ua y), kz(u, 5)

S L~

o

2EREEE
EEE

—
. v
w \—ghg

2 2 s hzth

o

ERE
N

-l

P(s)
P(u, v)
p, p

p

b P2

Q
Q(u, v)

Q1> @i2s Qars @a2(u, 9)
q

U
P
G115 12> 1> G225 5)

% w0 o
St v Ot Ot

(3-515-3)
(3-516-3)
25, 3-223
8-41

24

(3-51-2), 3-513
(3-51-2), 3-514
(3-51-2), 3-515
(3-51-2), 3-516
3-52

&

reaEweY g

10-31 (nozzles)
9:2

(25:3), 3-214
(4-2-2)

(2:3-2), 3-223
(6-4-24)
(8-41-15)
3.222

25, 3-223
(2:4-10), 3-223
(8-41-12)

2:2 (radius); 3-51, 3-512

(dra;
(6-101-1)
(3-51-2)

2-5

(2-4-10), 3-214
(2-3-7)

9-2

(5-2-1)

(5-2-4)

(5-2-5)
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Ry(s); Ru(s)
r

T, Io, Ty
r

e

S

S

Sl: SZ
Sy

Si x
S(u)
S(u, v)
s

sl x

0, T
1(5)s Ty(s
)

*Qa

©

°{°l>bl> > B

()

Z
Z(l), 7.2
ZN ) ZNT

R> “RT

0 dt, dgodt

tde, Jdt
dg,Jat

8-41
3-23

22
7-32
9-2

22
(8-42+4, 5)
(8-427)
(6-82-2)
(6:4-2)
(6-4-3)
3-23
(6-85-4)
(6-82-2)

(4-2-20)

22

integration

3-211
(4-24)
3-214
3-214

(4:2-6)
(4-2:5)

331, 3512
(3-512-2)
(3-53-4)
3-53
(51-1)

3-53
9-41
941
(3-53-1)
3-213

6-81

8:5 (aircraft speed)
used for s under sign of

v,V
V*

Vl’ VZ
v

H
VW
Ve
Vs Vs

v
v

Vo> 13

Uy

W, w

WI

w, w

wy

Woys Wogs Wy Wyo
Wy Wy,

xl(/"’)> x2(:“)3 x3(/l,)

¥1(1)s yo(1)5 y3(#)
z

Z(u), Z,(u)

zi (@) zo(p), z3(p)

Greek letters

H, H(s)
01
HO, H®

O =

K
Kq Kc

A, A(s)
A

AD ’\2
Hrs Bas K

v, V2

—
~

—
=

~ = "S
SN

Gesees [x]—- [x] [1] [1] [x]
5

-
~
N

ARSI |

)
o

2-2, 3-23

(3-511-3)

3-511

2-2

(3:52:2)

(6-85-3)

used for V under sign of
integration

2-2

used for s under sign of
integration

(6-3-9)

2-2

(2-3-8), 3-22-3

9-41

3:215

(3-3-14)

(6-3-5)

5-6

(576,17, 8)

(5-7-9, 10, 11)

see zeta
(6-4-7)
(6:7:12 to 5-7-15)

e

(4-223)
(4-4-9)
8-41
(3-3-15)

3-212
3-211, 3-213

(4-2°7)
(9-2-2, 3)

(4-2-16)

4-2-8)

6-3-3)

(4-2-9, 10, 11)

(4-2-2) (aerodynamic para-

meter)
(9-3-6) (spin parameter)
8-41

(3-3-3)

(6-4-26), (8-41-5)
41

9

-9, 6-10
7

215 (wind); (7-2-3) (spin)

215

3-14159...

2:2 (body density); App. C
0 2(air density); 3-53 (radius)



584 R. A. RANKIN ON THE MATHEMATICAL THEORY

) 2-2 (external surface); sum- y 3-213
-1mation sign
%, 2.2, 3-923 W 3-212
o 3.23 ) 3-211, 3-213
oc (3-3-10) Y ¥y (6-3-8)
, ous Yo Y11 Y1z (6-3-8)
7(s', 5) (9-3-3) Ve 3-214
dr 2-2 (volume element)
Q, 0 2-2, 3-23
T (3:3-13) Q, Q, Q, 24
Q (2-5'7)
D(ty, t) (7-32-7) w, © 323
] 3-211, 3-214 (Eulerian an- o* (3-511-3)
gle); (6-37) Wy, Wy 3-511
b0 $, (6:3-7) ey Gy 24, 3:23
dx 3-214 o 841
top 3-214 w, o, (4-2-3)
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